グラフに描かれた直線の式を求める問題です。グラフから読み取れる直線上の点の座標を利用して、直線の式を $y = ax + b$ の形で求めます。代数学一次関数グラフ直線の式座標2025/5/51. 問題の内容グラフに描かれた直線の式を求める問題です。グラフから読み取れる直線上の点の座標を利用して、直線の式を y=ax+by = ax + by=ax+b の形で求めます。2. 解き方の手順まず、グラフから直線が通る2点の座標を読み取ります。グラフを見ると、直線は点 (−1,−1)(-1, -1)(−1,−1) と点 (0,2)(0, 2)(0,2) を通っていることがわかります。直線の式を y=ax+by = ax + by=ax+b とおきます。点 (−1,−1)(-1, -1)(−1,−1) を通るので、−1=a(−1)+b-1 = a(-1) + b−1=a(−1)+b−1=−a+b-1 = -a + b−1=−a+b点 (0,2)(0, 2)(0,2) を通るので、2=a(0)+b2 = a(0) + b2=a(0)+b2=b2 = b2=bb=2b = 2b=2 を −1=−a+b-1 = -a + b−1=−a+b に代入すると、−1=−a+2-1 = -a + 2−1=−a+2a=3a = 3a=3したがって、直線の式は y=3x+2y = 3x + 2y=3x+2 となります。3. 最終的な答えy=3x+2y = 3x + 2y=3x+2