$x = \frac{\sqrt{2}+1}{\sqrt{2}-1}$ と $y = \frac{\sqrt{2}-1}{\sqrt{2}+1}$ のとき、$x^2 + 3xy + y^2$ の値を求めよ。代数学式の計算有理化展開平方根2025/5/51. 問題の内容x=2+12−1x = \frac{\sqrt{2}+1}{\sqrt{2}-1}x=2−12+1 と y=2−12+1y = \frac{\sqrt{2}-1}{\sqrt{2}+1}y=2+12−1 のとき、x2+3xy+y2x^2 + 3xy + y^2x2+3xy+y2 の値を求めよ。2. 解き方の手順まず、xxx と yyy をそれぞれ有理化します。x=2+12−1=(2+1)(2+1)(2−1)(2+1)=2+22+12−1=3+22x = \frac{\sqrt{2}+1}{\sqrt{2}-1} = \frac{(\sqrt{2}+1)(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{2 + 2\sqrt{2} + 1}{2 - 1} = 3 + 2\sqrt{2}x=2−12+1=(2−1)(2+1)(2+1)(2+1)=2−12+22+1=3+22y=2−12+1=(2−1)(2−1)(2+1)(2−1)=2−22+12−1=3−22y = \frac{\sqrt{2}-1}{\sqrt{2}+1} = \frac{(\sqrt{2}-1)(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)} = \frac{2 - 2\sqrt{2} + 1}{2 - 1} = 3 - 2\sqrt{2}y=2+12−1=(2+1)(2−1)(2−1)(2−1)=2−12−22+1=3−22次に、x2+3xy+y2x^2 + 3xy + y^2x2+3xy+y2 を変形します。x2+3xy+y2=x2+2xy+y2+xy=(x+y)2+xyx^2 + 3xy + y^2 = x^2 + 2xy + y^2 + xy = (x+y)^2 + xyx2+3xy+y2=x2+2xy+y2+xy=(x+y)2+xyx+yx+yx+y と xyxyxy の値を計算します。x+y=(3+22)+(3−22)=6x+y = (3+2\sqrt{2}) + (3-2\sqrt{2}) = 6x+y=(3+22)+(3−22)=6xy=(3+22)(3−22)=32−(22)2=9−8=1xy = (3+2\sqrt{2})(3-2\sqrt{2}) = 3^2 - (2\sqrt{2})^2 = 9 - 8 = 1xy=(3+22)(3−22)=32−(22)2=9−8=1したがって、x2+3xy+y2=(x+y)2+xy=62+1=36+1=37x^2 + 3xy + y^2 = (x+y)^2 + xy = 6^2 + 1 = 36 + 1 = 37x2+3xy+y2=(x+y)2+xy=62+1=36+1=373. 最終的な答え37