$x = \frac{\sqrt{2}+1}{\sqrt{2}-1}$ と $y = \frac{\sqrt{2}-1}{\sqrt{2}+1}$ のとき、$x^2 + 3xy + y^2$ の値を求めよ。

代数学式の計算有理化展開平方根
2025/5/5

1. 問題の内容

x=2+121x = \frac{\sqrt{2}+1}{\sqrt{2}-1}y=212+1y = \frac{\sqrt{2}-1}{\sqrt{2}+1} のとき、x2+3xy+y2x^2 + 3xy + y^2 の値を求めよ。

2. 解き方の手順

まず、xxyy をそれぞれ有理化します。
x=2+121=(2+1)(2+1)(21)(2+1)=2+22+121=3+22x = \frac{\sqrt{2}+1}{\sqrt{2}-1} = \frac{(\sqrt{2}+1)(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{2 + 2\sqrt{2} + 1}{2 - 1} = 3 + 2\sqrt{2}
y=212+1=(21)(21)(2+1)(21)=222+121=322y = \frac{\sqrt{2}-1}{\sqrt{2}+1} = \frac{(\sqrt{2}-1)(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)} = \frac{2 - 2\sqrt{2} + 1}{2 - 1} = 3 - 2\sqrt{2}
次に、x2+3xy+y2x^2 + 3xy + y^2 を変形します。
x2+3xy+y2=x2+2xy+y2+xy=(x+y)2+xyx^2 + 3xy + y^2 = x^2 + 2xy + y^2 + xy = (x+y)^2 + xy
x+yx+yxyxy の値を計算します。
x+y=(3+22)+(322)=6x+y = (3+2\sqrt{2}) + (3-2\sqrt{2}) = 6
xy=(3+22)(322)=32(22)2=98=1xy = (3+2\sqrt{2})(3-2\sqrt{2}) = 3^2 - (2\sqrt{2})^2 = 9 - 8 = 1
したがって、
x2+3xy+y2=(x+y)2+xy=62+1=36+1=37x^2 + 3xy + y^2 = (x+y)^2 + xy = 6^2 + 1 = 36 + 1 = 37

3. 最終的な答え

37