$(3x + 5y)^2$ を展開してください。

代数学展開代数式二項定理
2025/5/7

1. 問題の内容

(3x+5y)2(3x + 5y)^2 を展開してください。

2. 解き方の手順

(a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2 という公式を利用して展開します。
この問題では、a=3xa = 3xb=5yb = 5y となります。
したがって、
(3x+5y)2=(3x)2+2(3x)(5y)+(5y)2(3x + 5y)^2 = (3x)^2 + 2 \cdot (3x) \cdot (5y) + (5y)^2
それぞれの項を計算します。
(3x)2=9x2(3x)^2 = 9x^2
2(3x)(5y)=30xy2 \cdot (3x) \cdot (5y) = 30xy
(5y)2=25y2(5y)^2 = 25y^2
これらをまとめると、
(3x+5y)2=9x2+30xy+25y2(3x + 5y)^2 = 9x^2 + 30xy + 25y^2

3. 最終的な答え

9x2+30xy+25y29x^2 + 30xy + 25y^2

「代数学」の関連問題

与えられた多項式の同類項をまとめ、次数の大きい順に並べ替える問題です。具体的には、(5) $4x + 3x^2 - x - 2x^2$ と (6) $x + 4 + 3x^2 + 12 - 2x - ...

多項式同類項式の整理次数
2025/5/8

(1) $1 - ab \neq 0$ ならば、2次正方行列 $\begin{bmatrix} 1 & a \\ b & 1 \end{bmatrix}$ が正則であることを示す。 (2) n次正方行...

行列正則行列行列式線形代数
2025/5/8

問題 (4) と問題 (8) のそれぞれについて、$x$ と $y$ がパラメータ $t$ で表された式が与えられています。これらの式からパラメータ $t$ を消去し、$x$ と $y$ の関係式を求...

パラメータ表示変数消去分数式平方根
2025/5/8

$0 \le x \le 6$ において、異なる2つの1次関数 $y = mx + 5$ と $y = \frac{3}{2}x + n$ の $y$ の変域が一致するときの、$m$ と $n$ の値...

一次関数変域連立方程式
2025/5/8

バスケットボール選手Aが2ポイントシュートと3ポイントシュートのみを打ちます。Aの合計得点は60点、全シュートの成功率は40%、2ポイントシュートの成功率は60%、3ポイントシュートの成功率は30%で...

連立方程式文章問題割合得点計算
2025/5/8

(1) $1-ab \neq 0$ のとき、2次正方行列 $\begin{bmatrix} 1 & a \\ b & 1 \end{bmatrix}$ が正則であることを示す。 (2) $n$次正方行...

行列正則行列行列式線形代数
2025/5/8

正方行列 $A$ は単位行列 $I$ ではないべき等行列である (つまり $A^2 = A$ を満たす)。このとき、$A$ は正則ではないことを示す。

線形代数行列べき等行列正則行列逆行列背理法
2025/5/8

問題は以下の2点を示せというものです。 * べき零行列 $A$ は正則ではない。 * 任意の実数 $c$ に対して、$I + cA$ は正則である。ここで、$I$ は単位行列を表す。

線形代数行列べき零行列逆行列正則行列
2025/5/8

$a$ を正の定数、$t$ を2より大きい定数とする。座標平面上に、$x$ 座標が $-t$ の2点 $A, B$ と、$x$ 座標が $t$ の2点 $C, D$ がある。四角形 $ABCD$ は正...

二次関数図形問題座標平面連立方程式面積
2025/5/8

問題は、$(a-b)^3 + (b-c)^3 + (c-a)^3$ を簡略化することです。

式の展開因数分解恒等式多項式
2025/5/8