半径4cmの球を、中心を通る平面で4分の1に切った立体の体積を求めます。

幾何学体積立体の体積半径
2025/5/6

1. 問題の内容

半径4cmの球を、中心を通る平面で4分の1に切った立体の体積を求めます。

2. 解き方の手順

まず、球全体の体積を求めます。
球の体積の公式は、V=43πr3V = \frac{4}{3}\pi r^3 です。ここで、rr は球の半径です。
この問題では、r=4r=4 cmなので、球の体積は次のようになります。
V=43π(4)3=43π(64)=2563πV = \frac{4}{3} \pi (4)^3 = \frac{4}{3} \pi (64) = \frac{256}{3} \pi 立方センチメートル
次に、この球を4分の1に切った立体の体積を求めます。これは、球全体の体積の4分の1になります。
したがって、求める体積は、
14×2563π=25612π=643π\frac{1}{4} \times \frac{256}{3} \pi = \frac{256}{12} \pi = \frac{64}{3} \pi 立方センチメートル

3. 最終的な答え

643π\frac{64}{3} \pi 立方センチメートル

「幾何学」の関連問題

$\triangle ABC$ において、辺 $AB$ の中点を $M$、線分 $CM$ の中点を $D$、辺 $BC$ を $2:1$ に内分する点を $E$ とします。$\overrightarr...

ベクトル三角形同一直線上内分点中点
2025/6/16

問題は、以下の媒介変数表示がどのような曲線を表すかを答えることです。 (1) $x = 3\cos\theta + 2$, $y = 3\sin\theta - 1$ (2) $x = 3\cos\t...

媒介変数表示楕円三角関数曲線
2025/6/16

$\triangle ABC$ において、辺 $BC, CA, AB$ をそれぞれ $1:2$ に内分する点を $P, Q, R$ とする。点 $A, B, C, P, Q, R$ の位置ベクトルをそ...

ベクトル内分点重心三角形
2025/6/16

四面体OABCにおいて、OA = AB = 3、OC = 5、CA = 4、∠OAB = 90°、∠BOC = 45°である。 (1) BCの長さを求める。 (2) sin∠BACの値を求める。 (3...

空間図形四面体三平方の定理余弦定理体積
2025/6/16

問題は、三角形に関する比率の問題のようです。 (2) では、線分 BC と CS の比 $BC:CS$ を求めることが求められています。 与えられた式はチェバの定理のようです: $\frac{CB}{...

チェバの定理メネラウスの定理比率三角形
2025/6/16

図に示された角度$\alpha$と$\beta$の値を求める問題です。

角度三角形内角の和対頂角
2025/6/16

(1) 平面上の点を直線 $y = x$ に関して対称な点に移す一次変換の行列を求めます。 (2) 平面上の点 $(4, -3)$ を、原点を中心として $30^\circ$ 回転した点の座標を求めま...

線形変換行列回転座標変換
2025/6/16

三角形ABCにおいて、$AB=6$, $BC=4$, $CA=3$である。三角形ABCの内心をIとし、直線AIと辺BCの交点をDとする。このとき、$BD:DC$と$AI:ID$を求めよ。

三角形内心内角の二等分線
2025/6/16

座標平面上に3点 O(0, 0), A(2, 3), B(6, 1) がある。点 P の位置ベクトル $\overrightarrow{OP}$ が $\overrightarrow{OP} = s\...

ベクトル座標平面図形線分三角形
2025/6/16

2つの直線がなす角 $\theta$ を求める問題です。ただし、$0 < \theta < \frac{\pi}{2}$ とします。 (1) $y = -3x$, $y = 2x$ (2) $y = ...

角度直線三角関数tan加法定理
2025/6/16