二次方程式 $x^2 - 5x + 6 = 0$ を解く問題です。

代数学二次方程式因数分解解の公式
2025/5/6

1. 問題の内容

二次方程式 x25x+6=0x^2 - 5x + 6 = 0 を解く問題です。

2. 解き方の手順

与えられた二次方程式を因数分解して解きます。
まず、方程式を因数分解します。
x25x+6=0x^2 - 5x + 6 = 0 は、(x2)(x3)=0(x - 2)(x - 3) = 0 と因数分解できます。
したがって、x2=0x - 2 = 0 または x3=0x - 3 = 0 となります。
それぞれの式を解くと、x=2x = 2 または x=3x = 3 が得られます。

3. 最終的な答え

x=2,3x = 2, 3

「代数学」の関連問題

放物線と直線の交点の座標を求める問題です。放物線上の点(2, 8)と直線がy軸上の(0,1)を通る事が分かっています。

二次関数連立方程式放物線直線交点
2025/5/6

$x = \frac{1}{\sqrt{7}-\sqrt{5}}$、$y = \frac{1}{\sqrt{7}+\sqrt{5}}$ のとき、次の式の値を求めます。 (1) $x+y$, $xy$ ...

式の計算有理化平方根式の値
2025/5/6

連続する2つの奇数がある。その2つの奇数の積から3を引いた数が4の倍数になることを証明する問題で、証明の空欄を埋める。

整数因数分解証明代数
2025/5/6

$x=6$, $y=3$ のとき、$(x+4y)(x-2y)-4y(x-2y)$ の値を求める。

式の展開因数分解式の値
2025/5/6

$x = 57$ のとき、$x^2 + 6x + 9$ の値を求める問題です。

二次方程式因数分解式の値
2025/5/6

与えられた式 $x^2 + 2xy - 5x - 6y + 6$ を因数分解してください。

因数分解多項式二次式
2025/5/6

与えられたグラフの放物線の式を求める問題です。グラフから、放物線の頂点が(0, 0)であり、点(1, -1)を通ることがわかります。

放物線二次関数グラフ頂点
2025/5/6

$73^2 - 27^2$ を工夫して計算し、答えを求める問題です。

因数分解計算平方差
2025/5/6

$a < b$ のとき、以下の2つの数の大小を不等号(> または <)で表す問題です。 (1) $a+3$, $b+3$ (2) $a-4$, $b-4$ (3) $5a$, $5b$ (4) $-4...

不等式大小比較式の変形
2025/5/6

ベクトル $a = (2, k)$ とベクトル $b = (3, 2k-1)$ が平行となるような実数 $k$ の値を求めよ。

ベクトル平行線形代数
2025/5/6