あるクラスで、サッカーの中継を見た生徒が25人、卓球の中継を見た生徒が17人、サッカーと卓球の両方を見た生徒が10人いる。サッカーまたは卓球の中継を見た生徒は何人いるか求める。

確率論・統計学集合包含と排除の原理統計
2025/5/6

1. 問題の内容

あるクラスで、サッカーの中継を見た生徒が25人、卓球の中継を見た生徒が17人、サッカーと卓球の両方を見た生徒が10人いる。サッカーまたは卓球の中継を見た生徒は何人いるか求める。

2. 解き方の手順

サッカーを見た生徒の集合をA、卓球を見た生徒の集合をBとする。
求めるのは、AとBの和集合の要素の数 n(AB)n(A \cup B) である。
和集合の要素の数は、以下の公式で求めることができる。
n(AB)=n(A)+n(B)n(AB)n(A \cup B) = n(A) + n(B) - n(A \cap B)
問題文より、n(A)=25n(A) = 25n(B)=17n(B) = 17n(AB)=10n(A \cap B) = 10 である。
これらの値を公式に代入すると、
n(AB)=25+1710n(A \cup B) = 25 + 17 - 10
n(AB)=4210n(A \cup B) = 42 - 10
n(AB)=32n(A \cup B) = 32

3. 最終的な答え

32人

「確率論・統計学」の関連問題

3つの区別できないサイコロを投げたとき、出た目の数の合計が11になる場合は何通りあるかを求める問題です。

場合の数確率サイコロ組み合わせ
2025/5/6

海外旅行者100人のうち、75人が風邪薬を、80人が胃薬を携帯していた。風邪薬と胃薬を両方とも携帯していた人の数を $m$ とするとき、$m$ のとりうる値の最大値と最小値を求める。

集合最大値最小値ベン図包含と除外の原理
2025/5/6

四面体OABCの頂点を移動する点Pがあり、点Pは1秒後に他の3つの頂点のいずれかに確率$1/3$で移動します。最初に頂点Oにいた点Pがn秒後に頂点Aにいる確率$p_n$を求める問題です。

確率漸化式等比数列確率過程
2025/5/6

大小中3つのサイコロを投げるとき、以下の条件を満たす場合の数を求めます。 (1) 目の和が7になる場合 (2) 目の積が6になる場合

場合の数確率サイコロ組み合わせ
2025/5/6

(7) 男子4人と女子2人が横一列に並ぶとき、女子2人が隣り合うような並び方の総数を求める問題。 (8) 赤玉6個と白玉4個が入っている袋から、同時に3個の玉を取り出すとき、赤玉も白玉も含まれる確率を...

順列組み合わせ確率場合の数
2025/5/6

3枚の硬貨を同時に投げたとき、表が出る枚数を確率変数 $X$ とします。このとき、確率変数 $X$ の期待値を求めなさい。

確率期待値確率変数二項分布ベルヌーイ試行
2025/5/6

7人の生徒の中から5人の生徒を選ぶ選び方は何通りあるか求める問題です。

組み合わせ場合の数順列と組み合わせ
2025/5/6

1枚の硬貨を4回続けて投げるとき、表と裏の出方は全部で何通りあるか。

確率組み合わせ場合の数独立試行
2025/5/6

(4) $8P_4$ の値を求めよ。 (5) 5人の中から3人を選んで横一列に並べるとき、並べ方は全部で何通りあるか。

順列組み合わせ場合の数
2025/5/6

男子3人、女子5人の中から、男子1人と女子1人を選ぶ方法は何通りあるかを求める問題です。

組み合わせ場合の数順列
2025/5/6