$x = \frac{2}{\sqrt{7}+\sqrt{3}}$、$y = \frac{2}{\sqrt{7}-\sqrt{3}}$のとき、$x+y$と$xy$の値を求めよ。代数学式の計算有理化平方根2025/5/61. 問題の内容x=27+3x = \frac{2}{\sqrt{7}+\sqrt{3}}x=7+32、y=27−3y = \frac{2}{\sqrt{7}-\sqrt{3}}y=7−32のとき、x+yx+yx+yとxyxyxyの値を求めよ。2. 解き方の手順まず、xxxとyyyの分母を有理化する。x=27+3=2(7−3)(7+3)(7−3)=2(7−3)7−3=2(7−3)4=7−32x = \frac{2}{\sqrt{7}+\sqrt{3}} = \frac{2(\sqrt{7}-\sqrt{3})}{(\sqrt{7}+\sqrt{3})(\sqrt{7}-\sqrt{3})} = \frac{2(\sqrt{7}-\sqrt{3})}{7-3} = \frac{2(\sqrt{7}-\sqrt{3})}{4} = \frac{\sqrt{7}-\sqrt{3}}{2}x=7+32=(7+3)(7−3)2(7−3)=7−32(7−3)=42(7−3)=27−3y=27−3=2(7+3)(7−3)(7+3)=2(7+3)7−3=2(7+3)4=7+32y = \frac{2}{\sqrt{7}-\sqrt{3}} = \frac{2(\sqrt{7}+\sqrt{3})}{(\sqrt{7}-\sqrt{3})(\sqrt{7}+\sqrt{3})} = \frac{2(\sqrt{7}+\sqrt{3})}{7-3} = \frac{2(\sqrt{7}+\sqrt{3})}{4} = \frac{\sqrt{7}+\sqrt{3}}{2}y=7−32=(7−3)(7+3)2(7+3)=7−32(7+3)=42(7+3)=27+3次に、x+yx+yx+yとxyxyxyを計算する。x+y=7−32+7+32=7−3+7+32=272=7x+y = \frac{\sqrt{7}-\sqrt{3}}{2} + \frac{\sqrt{7}+\sqrt{3}}{2} = \frac{\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}}{2} = \frac{2\sqrt{7}}{2} = \sqrt{7}x+y=27−3+27+3=27−3+7+3=227=7xy=7−32⋅7+32=(7−3)(7+3)4=7−34=44=1xy = \frac{\sqrt{7}-\sqrt{3}}{2} \cdot \frac{\sqrt{7}+\sqrt{3}}{2} = \frac{(\sqrt{7}-\sqrt{3})(\sqrt{7}+\sqrt{3})}{4} = \frac{7-3}{4} = \frac{4}{4} = 1xy=27−3⋅27+3=4(7−3)(7+3)=47−3=44=13. 最終的な答えx+y=7x+y = \sqrt{7}x+y=7xy=1xy = 1xy=1