Given that $tan \alpha = -\frac{1}{2}$, find the value of $\frac{2 \sin \alpha \cos \alpha}{\sin^2 \alpha - \cos^2 \alpha}$.

TrigonometryTrigonometryTrigonometric IdentitiesTangentSineCosine
2025/3/19

1. Problem Description

Given that tanα=12tan \alpha = -\frac{1}{2}, find the value of 2sinαcosαsin2αcos2α\frac{2 \sin \alpha \cos \alpha}{\sin^2 \alpha - \cos^2 \alpha}.

2. Solution Steps

First, divide both the numerator and the denominator of the given expression by cos2α\cos^2 \alpha:
2sinαcosαsin2αcos2α=2sinαcosαcos2αsin2αcos2αcos2α=2sinαcosαsin2αcos2αcos2αcos2α=2tanαtan2α1 \frac{2 \sin \alpha \cos \alpha}{\sin^2 \alpha - \cos^2 \alpha} = \frac{\frac{2 \sin \alpha \cos \alpha}{\cos^2 \alpha}}{\frac{\sin^2 \alpha - \cos^2 \alpha}{\cos^2 \alpha}} = \frac{2 \frac{\sin \alpha}{\cos \alpha}}{\frac{\sin^2 \alpha}{\cos^2 \alpha} - \frac{\cos^2 \alpha}{\cos^2 \alpha}} = \frac{2 \tan \alpha}{\tan^2 \alpha - 1}
Now, substitute the given value tanα=12tan \alpha = -\frac{1}{2} into the simplified expression:
2tanαtan2α1=2(12)(12)21=1141=11444=134=1143=43 \frac{2 \tan \alpha}{\tan^2 \alpha - 1} = \frac{2 \cdot (-\frac{1}{2})}{(-\frac{1}{2})^2 - 1} = \frac{-1}{\frac{1}{4} - 1} = \frac{-1}{\frac{1}{4} - \frac{4}{4}} = \frac{-1}{-\frac{3}{4}} = \frac{-1}{1} \cdot \frac{4}{-3} = \frac{4}{3}

3. Final Answer

The value of 2sinαcosαsin2αcos2α\frac{2 \sin \alpha \cos \alpha}{\sin^2 \alpha - \cos^2 \alpha} is 43\frac{4}{3}.

Related problems in "Trigonometry"

We need to find the value of $\theta$ given the equation $\cos{\theta} = \frac{0}{\sqrt{2} \times 3}...

TrigonometryCosineAngleEquation Solving
2025/4/5

The problem is to verify the identity: $sin^6x + cos^6x = 1 - 3sin^2xcos^2x$

Trigonometric IdentitiesAlgebraic ManipulationProof
2025/4/5

We are asked to prove two trigonometric identities. i. $\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} ...

Trigonometric IdentitiesDouble Angle FormulasTrigonometric Simplification
2025/3/31

The problem consists of five sub-problems: a) Place the points A, B, C, D, E, F, G, H, J, and I on t...

Trigonometric FunctionsUnit CircleTrigonometric IdentitiesHalf-Angle FormulasSimplification
2025/3/29

Verify the trigonometric identity: $\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x$.

Trigonometric IdentitiesAlgebraic ManipulationSineCosine
2025/3/28

We are asked to simplify the expression $sin7x + sinx - 2sin2xcos3x$. We need to choose the correct ...

Trigonometric IdentitiesSum-to-Product FormulasTrigonometric Simplification
2025/3/27

The problem asks to simplify the trigonometric expression $\sin 7x + \sin x - 2\sin 2x \cos 3x$.

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasSimplification
2025/3/27

We are given that $\sin A = \frac{3}{8}$ and $\tan A = \frac{3}{4}$. We need to find the value of $\...

TrigonometrySineCosineTangentTrigonometric Identities
2025/3/27

The problem asks to find the value of $cosA$ given that $sinA = \frac{3}{8}$ and $tanA = \frac{3}{4}...

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/27

Given $\tan \alpha = 5$, find the value of $\sin \alpha \cdot \cos \alpha$.

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/19