Given that $tan \alpha = 5$, find the value of $sin \alpha \cdot cos \alpha$.

TrigonometryTrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/19

1. Problem Description

Given that tanα=5tan \alpha = 5, find the value of sinαcosαsin \alpha \cdot cos \alpha.

2. Solution Steps

We are given tanα=5tan \alpha = 5. We want to find sinαcosαsin \alpha \cdot cos \alpha.
We know that tanα=sinαcosαtan \alpha = \frac{sin \alpha}{cos \alpha}. Therefore, sinαcosα=5\frac{sin \alpha}{cos \alpha} = 5, which implies sinα=5cosαsin \alpha = 5cos \alpha.
We also know the trigonometric identity:
sin2α+cos2α=1sin^2 \alpha + cos^2 \alpha = 1.
Substituting sinα=5cosαsin \alpha = 5cos \alpha into the identity, we get:
(5cosα)2+cos2α=1(5cos \alpha)^2 + cos^2 \alpha = 1
25cos2α+cos2α=125cos^2 \alpha + cos^2 \alpha = 1
26cos2α=126cos^2 \alpha = 1
cos2α=126cos^2 \alpha = \frac{1}{26}
Therefore, cosα=±126=±126cos \alpha = \pm \sqrt{\frac{1}{26}} = \pm \frac{1}{\sqrt{26}}.
Since sinα=5cosαsin \alpha = 5cos \alpha, we have sinα=±526sin \alpha = \pm \frac{5}{\sqrt{26}}.
Now, we want to find sinαcosαsin \alpha \cdot cos \alpha:
sinαcosα=(5cosα)cosα=5cos2αsin \alpha \cdot cos \alpha = (5cos \alpha) \cdot cos \alpha = 5cos^2 \alpha
sinαcosα=5126=526sin \alpha \cdot cos \alpha = 5 \cdot \frac{1}{26} = \frac{5}{26}.
Alternatively, if we plug in the value of sinαsin \alpha and cosαcos \alpha:
sinαcosα=(±526)(±126)=526sin \alpha \cdot cos \alpha = \left( \pm \frac{5}{\sqrt{26}} \right) \left( \pm \frac{1}{\sqrt{26}} \right) = \frac{5}{26}.

3. Final Answer

The value of sinαcosαsin \alpha \cdot cos \alpha is 526\frac{5}{26}.

Related problems in "Trigonometry"

We need to find the value of $\theta$ given the equation $\cos{\theta} = \frac{0}{\sqrt{2} \times 3}...

TrigonometryCosineAngleEquation Solving
2025/4/5

The problem is to verify the identity: $sin^6x + cos^6x = 1 - 3sin^2xcos^2x$

Trigonometric IdentitiesAlgebraic ManipulationProof
2025/4/5

We are asked to prove two trigonometric identities. i. $\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} ...

Trigonometric IdentitiesDouble Angle FormulasTrigonometric Simplification
2025/3/31

The problem consists of five sub-problems: a) Place the points A, B, C, D, E, F, G, H, J, and I on t...

Trigonometric FunctionsUnit CircleTrigonometric IdentitiesHalf-Angle FormulasSimplification
2025/3/29

Verify the trigonometric identity: $\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x$.

Trigonometric IdentitiesAlgebraic ManipulationSineCosine
2025/3/28

We are asked to simplify the expression $sin7x + sinx - 2sin2xcos3x$. We need to choose the correct ...

Trigonometric IdentitiesSum-to-Product FormulasTrigonometric Simplification
2025/3/27

The problem asks to simplify the trigonometric expression $\sin 7x + \sin x - 2\sin 2x \cos 3x$.

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasSimplification
2025/3/27

We are given that $\sin A = \frac{3}{8}$ and $\tan A = \frac{3}{4}$. We need to find the value of $\...

TrigonometrySineCosineTangentTrigonometric Identities
2025/3/27

The problem asks to find the value of $cosA$ given that $sinA = \frac{3}{8}$ and $tanA = \frac{3}{4}...

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/27

Given $\tan \alpha = 5$, find the value of $\sin \alpha \cdot \cos \alpha$.

TrigonometryTrigonometric IdentitiesSineCosineTangent
2025/3/19