The problem asks to evaluate the expression $\cos\frac{9\pi}{4} + \tan(-\frac{11\pi}{6})$.

AnalysisTrigonometryTrigonometric FunctionsAngle ConversionEvaluation
2025/3/19

1. Problem Description

The problem asks to evaluate the expression cos9π4+tan(11π6)\cos\frac{9\pi}{4} + \tan(-\frac{11\pi}{6}).

2. Solution Steps

First, let's evaluate cos9π4\cos\frac{9\pi}{4}.
Since cos(θ+2πn)=cos(θ)\cos(\theta + 2\pi n) = \cos(\theta) for any integer nn, we have
cos9π4=cos(9π42π)=cos(9π48π4)=cos(π4)\cos\frac{9\pi}{4} = \cos(\frac{9\pi}{4} - 2\pi) = \cos(\frac{9\pi}{4} - \frac{8\pi}{4}) = \cos(\frac{\pi}{4}).
cos(π4)=22\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}.
Next, let's evaluate tan(11π6)\tan(-\frac{11\pi}{6}).
Since tan(θ)=tan(θ)\tan(-\theta) = -\tan(\theta), we have tan(11π6)=tan(11π6)\tan(-\frac{11\pi}{6}) = -\tan(\frac{11\pi}{6}).
Also, tan(θ+πn)=tan(θ)\tan(\theta + \pi n) = \tan(\theta) for any integer nn.
So, tan(11π6)=tan(11π62π)=tan(11π612π6)=tan(π6)=tan(π6)-\tan(\frac{11\pi}{6}) = -\tan(\frac{11\pi}{6} - 2\pi) = -\tan(\frac{11\pi}{6} - \frac{12\pi}{6}) = -\tan(-\frac{\pi}{6}) = \tan(\frac{\pi}{6}).
tan(π6)=sin(π6)cos(π6)=1232=13=33\tan(\frac{\pi}{6}) = \frac{\sin(\frac{\pi}{6})}{\cos(\frac{\pi}{6})} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}.
Therefore,
cos9π4+tan(11π6)=22+33=32+236\cos\frac{9\pi}{4} + \tan(-\frac{11\pi}{6}) = \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{3} = \frac{3\sqrt{2} + 2\sqrt{3}}{6}.

3. Final Answer

32+236\frac{3\sqrt{2} + 2\sqrt{3}}{6}

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1