原点Oから出発して数直線上を動く点Pがあります。サイコロを投げて3の倍数が出たら+1移動し、それ以外の目が出たら-2移動します。サイコロを12回投げたとき、Pの座標Xの期待値と分散を求めます。
2025/5/6
1. 問題の内容
原点Oから出発して数直線上を動く点Pがあります。サイコロを投げて3の倍数が出たら+1移動し、それ以外の目が出たら-2移動します。サイコロを12回投げたとき、Pの座標Xの期待値と分散を求めます。
2. 解き方の手順
まず、サイコロを1回投げる時の、移動量の期待値を計算します。3の倍数が出る確率は で、このとき+1移動します。3の倍数以外が出る確率は で、このとき-2移動します。したがって、1回の移動量の期待値 は、
次に、サイコロを12回投げた時の座標Xの期待値を計算します。1回の移動量の期待値が-1なので、12回投げた時の期待値 は、
次に、分散を求めます。まず、1回の移動量の分散 を計算します。
サイコロを12回投げたときの座標Xの分散は、各試行が独立なので、それぞれの分散の和になります。
3. 最終的な答え
期待値: -12
分散: 24