毎日貯金する金額が、1日目は1円、2日目は2円、3日目は4円、4日目は8円…というように、前日の2倍になるとき、15日間での貯金の総額を求める。

代数学等比数列数列の和指数計算
2025/5/6

1. 問題の内容

毎日貯金する金額が、1日目は1円、2日目は2円、3日目は4円、4日目は8円…というように、前日の2倍になるとき、15日間での貯金の総額を求める。

2. 解き方の手順

この問題は、初項1、公比2の等比数列の和を求める問題です。等比数列の和の公式は以下の通りです。
Sn=a(rn1)r1S_n = \frac{a(r^n - 1)}{r - 1}
ここで、
- SnS_n は等比数列の最初の nn 項の和
- aa は初項
- rr は公比
- nn は項数
この問題では、a=1a = 1, r=2r = 2, n=15n = 15 です。
これらの値を公式に代入します。
S15=1(2151)21S_{15} = \frac{1(2^{15} - 1)}{2 - 1}
S15=2151S_{15} = 2^{15} - 1
215=327682^{15} = 32768
したがって、
S15=327681=32767S_{15} = 32768 - 1 = 32767

3. 最終的な答え

15日間での貯金の総額は32767円です。

「代数学」の関連問題

問題は、次の式を因数分解することです。 $a(b-c)^2 + b(c-a)^2 + c(a-b)^2 + 8abc$

因数分解多項式
2025/5/6

グラフの切片が3で、点$(-1, -1)$を通る直線の式を求めなさい。

一次関数グラフ傾き切片方程式
2025/5/6

式 $(x+\frac{1}{2})(x+\frac{3}{4})$ を展開しなさい。

展開多項式代数
2025/5/6

問題は2つあります。 1つ目の問題は、第3項が10である等差数列の初項から第5項までの和を求める問題です。 2つ目の問題は、初項が70、公差が-4である等差数列{an}について、以下の2つを求める問題...

等差数列数列の和漸化式数学的帰納法
2025/5/6

2つの数式をそれぞれ簡単にします。 (3) $a(x-y) - 2(y-x)$ (4) $2a(a-3b) + b(3b-a)$

式の展開因数分解同類項の計算
2025/5/6

複素数 $1+i$ と $\sqrt{3}+i$ を極形式で表すことによって、$\cos\frac{5\pi}{12}$ と $\sin\frac{5\pi}{12}$ の値を求める問題です。

複素数極形式三角関数加法定理
2025/5/6

与えられた式 $x^2 + 3xy + 2y^2$ を因数分解せよ。

因数分解多項式
2025/5/6

与えられた数式を因数分解する問題です。 29(1): $x(x+1) + 2(x+1)$ 29(3): $a(x-y) - 2(y-x)$

因数分解多項式共通因数
2025/5/6

5. 次の等差数列の和を求めよ。 (1) 初項40, 末項6, 項数18 (2) 初項11, 公差4, 項数10 (3) 初項70, 公差-5, 項数17 (4) 2, 5, 8, ..., 50 6...

数列等差数列和の公式
2025/5/6

与えられた数式を因数分解する問題です。具体的には、以下の9つの式を因数分解します。 (1) $6a^2b + 3ab^2$ (2) $2x^2 + 2xy - 6x$ (3) $4ax^2 - 12a...

因数分解多項式共通因数展開
2025/5/6