$x = \frac{3+\sqrt{5}}{3-\sqrt{5}}$、 $y = \frac{3-\sqrt{5}}{3+\sqrt{5}}$ のとき、$x^2 + y^2$ と $x^3 + y^3$ の値を求める問題です。代数学式の計算有理化根号展開対称式2025/5/61. 問題の内容x=3+53−5x = \frac{3+\sqrt{5}}{3-\sqrt{5}}x=3−53+5、 y=3−53+5y = \frac{3-\sqrt{5}}{3+\sqrt{5}}y=3+53−5 のとき、x2+y2x^2 + y^2x2+y2 と x3+y3x^3 + y^3x3+y3 の値を求める問題です。2. 解き方の手順まず、xxxとyyyの分母を有理化します。x=3+53−5=(3+5)(3+5)(3−5)(3+5)=9+65+59−5=14+654=7+352x = \frac{3+\sqrt{5}}{3-\sqrt{5}} = \frac{(3+\sqrt{5})(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})} = \frac{9 + 6\sqrt{5} + 5}{9-5} = \frac{14 + 6\sqrt{5}}{4} = \frac{7+3\sqrt{5}}{2}x=3−53+5=(3−5)(3+5)(3+5)(3+5)=9−59+65+5=414+65=27+35y=3−53+5=(3−5)(3−5)(3+5)(3−5)=9−65+59−5=14−654=7−352y = \frac{3-\sqrt{5}}{3+\sqrt{5}} = \frac{(3-\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} = \frac{9 - 6\sqrt{5} + 5}{9-5} = \frac{14 - 6\sqrt{5}}{4} = \frac{7-3\sqrt{5}}{2}y=3+53−5=(3+5)(3−5)(3−5)(3−5)=9−59−65+5=414−65=27−35次に、x+yx+yx+yとxyxyxyを計算します。x+y=7+352+7−352=142=7x+y = \frac{7+3\sqrt{5}}{2} + \frac{7-3\sqrt{5}}{2} = \frac{14}{2} = 7x+y=27+35+27−35=214=7xy=3+53−5⋅3−53+5=1xy = \frac{3+\sqrt{5}}{3-\sqrt{5}} \cdot \frac{3-\sqrt{5}}{3+\sqrt{5}} = 1xy=3−53+5⋅3+53−5=1x2+y2x^2 + y^2x2+y2を計算します。x2+y2=(x+y)2−2xy=72−2(1)=49−2=47x^2 + y^2 = (x+y)^2 - 2xy = 7^2 - 2(1) = 49 - 2 = 47x2+y2=(x+y)2−2xy=72−2(1)=49−2=47x3+y3x^3 + y^3x3+y3を計算します。x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)=7(72−3(1))=7(49−3)=7(46)=322x^3 + y^3 = (x+y)(x^2 - xy + y^2) = (x+y)((x+y)^2 - 3xy) = 7(7^2 - 3(1)) = 7(49 - 3) = 7(46) = 322x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)=7(72−3(1))=7(49−3)=7(46)=3223. 最終的な答えx2+y2=47x^2 + y^2 = 47x2+y2=47x3+y3=322x^3 + y^3 = 322x3+y3=322