## 問題の内容代数学複素数極形式複素数の積複素数の商2025/5/6## 問題の内容与えられた複素数 α\alphaα と β\betaβ に対して、αβ\alpha\betaαβ と αβ\frac{\alpha}{\beta}βα をそれぞれ極形式で表す。ただし、偏角 θ\thetaθ の範囲は 0≤θ<2π0 \le \theta < 2\pi0≤θ<2π とする。問題は2つあります。(1) α=cos712π+isin712π\alpha = \cos\frac{7}{12}\pi + i\sin\frac{7}{12}\piα=cos127π+isin127π, β=cos512π+isin512π\beta = \cos\frac{5}{12}\pi + i\sin\frac{5}{12}\piβ=cos125π+isin125π(2) α=2(cos23π+isin23π)\alpha = 2(\cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi)α=2(cos32π+isin32π), β=4(cosπ6+isinπ6)\beta = 4(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})β=4(cos6π+isin6π)## 解き方の手順複素数の極形式における積と商の公式を利用する。α=r1(cosθ1+isinθ1)\alpha = r_1(\cos\theta_1 + i\sin\theta_1)α=r1(cosθ1+isinθ1), β=r2(cosθ2+isinθ2)\beta = r_2(\cos\theta_2 + i\sin\theta_2)β=r2(cosθ2+isinθ2) のとき、αβ=r1r2(cos(θ1+θ2)+isin(θ1+θ2))\alpha\beta = r_1 r_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))αβ=r1r2(cos(θ1+θ2)+isin(θ1+θ2))αβ=r1r2(cos(θ1−θ2)+isin(θ1−θ2))\frac{\alpha}{\beta} = \frac{r_1}{r_2}(\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2))βα=r2r1(cos(θ1−θ2)+isin(θ1−θ2))偏角 θ1+θ2\theta_1 + \theta_2θ1+θ2 または θ1−θ2\theta_1 - \theta_2θ1−θ2 が 0≤θ<2π0 \le \theta < 2\pi0≤θ<2π の範囲外にある場合は、 2π2\pi2π の整数倍を足し引きして、この範囲内に収める。**(1)**α=cos712π+isin712π\alpha = \cos\frac{7}{12}\pi + i\sin\frac{7}{12}\piα=cos127π+isin127π, β=cos512π+isin512π\beta = \cos\frac{5}{12}\pi + i\sin\frac{5}{12}\piβ=cos125π+isin125παβ=1⋅1(cos(712π+512π)+isin(712π+512π))\alpha\beta = 1 \cdot 1 \left( \cos\left(\frac{7}{12}\pi + \frac{5}{12}\pi\right) + i\sin\left(\frac{7}{12}\pi + \frac{5}{12}\pi\right) \right)αβ=1⋅1(cos(127π+125π)+isin(127π+125π))=cosπ+isinπ= \cos\pi + i\sin\pi=cosπ+isinπαβ=11(cos(712π−512π)+isin(712π−512π))\frac{\alpha}{\beta} = \frac{1}{1} \left( \cos\left(\frac{7}{12}\pi - \frac{5}{12}\pi\right) + i\sin\left(\frac{7}{12}\pi - \frac{5}{12}\pi\right) \right)βα=11(cos(127π−125π)+isin(127π−125π))=cos16π+isin16π=cosπ6+isinπ6= \cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}=cos61π+isin61π=cos6π+isin6π**(2)**α=2(cos23π+isin23π)\alpha = 2(\cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi)α=2(cos32π+isin32π), β=4(cosπ6+isinπ6)\beta = 4(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})β=4(cos6π+isin6π)αβ=2⋅4(cos(23π+π6)+isin(23π+π6))\alpha\beta = 2 \cdot 4 \left( \cos\left(\frac{2}{3}\pi + \frac{\pi}{6}\right) + i\sin\left(\frac{2}{3}\pi + \frac{\pi}{6}\right) \right)αβ=2⋅4(cos(32π+6π)+isin(32π+6π))=8(cos56π+isin56π)= 8\left( \cos\frac{5}{6}\pi + i\sin\frac{5}{6}\pi \right)=8(cos65π+isin65π)αβ=24(cos(23π−π6)+isin(23π−π6))\frac{\alpha}{\beta} = \frac{2}{4} \left( \cos\left(\frac{2}{3}\pi - \frac{\pi}{6}\right) + i\sin\left(\frac{2}{3}\pi - \frac{\pi}{6}\right) \right)βα=42(cos(32π−6π)+isin(32π−6π))=12(cosπ2+isinπ2)= \frac{1}{2}\left( \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} \right)=21(cos2π+isin2π)## 最終的な答え**(1)**αβ=cosπ+isinπ\alpha\beta = \cos\pi + i\sin\piαβ=cosπ+isinπαβ=cosπ6+isinπ6\frac{\alpha}{\beta} = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}βα=cos6π+isin6π**(2)**αβ=8(cos56π+isin56π)\alpha\beta = 8\left( \cos\frac{5}{6}\pi + i\sin\frac{5}{6}\pi \right)αβ=8(cos65π+isin65π)αβ=12(cosπ2+isinπ2)\frac{\alpha}{\beta} = \frac{1}{2}\left( \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} \right)βα=21(cos2π+isin2π)