3次元極座標(球座標)において、直交座標 $(x, y, z)$ から極座標 $(r, \theta, \phi)$ への変換が与えられている。 $x = r \sin \theta \cos \phi$ $y = r \sin \theta \sin \phi$ $z = r \cos \theta$ このとき、$\frac{\partial r}{\partial x}$, $\frac{\partial \phi}{\partial x}$, $\frac{\partial \theta}{\partial x}$, $\frac{\partial \theta}{\partial z}$ を求める。

解析学偏微分極座標座標変換微分
2025/5/7

1. 問題の内容

3次元極座標(球座標)において、直交座標 (x,y,z)(x, y, z) から極座標 (r,θ,ϕ)(r, \theta, \phi) への変換が与えられている。
x=rsinθcosϕx = r \sin \theta \cos \phi
y=rsinθsinϕy = r \sin \theta \sin \phi
z=rcosθz = r \cos \theta
このとき、rx\frac{\partial r}{\partial x}, ϕx\frac{\partial \phi}{\partial x}, θx\frac{\partial \theta}{\partial x}, θz\frac{\partial \theta}{\partial z} を求める。

2. 解き方の手順

まず、与えられた座標変換から、r,θ,ϕr, \theta, \phix,y,zx, y, z で表す。
r=x2+y2+z2r = \sqrt{x^2 + y^2 + z^2}
tanϕ=yxϕ=arctanyx\tan \phi = \frac{y}{x} \Rightarrow \phi = \arctan \frac{y}{x}
cosθ=zr=zx2+y2+z2θ=arccoszx2+y2+z2\cos \theta = \frac{z}{r} = \frac{z}{\sqrt{x^2 + y^2 + z^2}} \Rightarrow \theta = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}}
次に、これらの式を xxzz で偏微分する。
rx=xx2+y2+z2=12x2+y2+z2(2x)=xx2+y2+z2=xr=rsinθcosϕr=sinθcosϕ\frac{\partial r}{\partial x} = \frac{\partial}{\partial x} \sqrt{x^2 + y^2 + z^2} = \frac{1}{2\sqrt{x^2 + y^2 + z^2}} (2x) = \frac{x}{\sqrt{x^2 + y^2 + z^2}} = \frac{x}{r} = \frac{r \sin \theta \cos \phi}{r} = \sin \theta \cos \phi
ϕx=xarctanyx=11+(yx)2(yx2)=x2x2+y2(yx2)=yx2+y2=rsinθsinϕr2sin2θ=sinϕrsinθ\frac{\partial \phi}{\partial x} = \frac{\partial}{\partial x} \arctan \frac{y}{x} = \frac{1}{1 + (\frac{y}{x})^2} \cdot (-\frac{y}{x^2}) = \frac{x^2}{x^2 + y^2} \cdot (-\frac{y}{x^2}) = -\frac{y}{x^2 + y^2} = -\frac{r \sin \theta \sin \phi}{r^2 \sin^2 \theta} = -\frac{\sin \phi}{r \sin \theta}
θx=xarccoszx2+y2+z2=11(zx2+y2+z2)2z(12)(x2+y2+z2)32(2x)=1x2+y2x2+y2+z2xz(x2+y2+z2)32=x2+y2+z2x2+y2xz(x2+y2+z2)32=rx2+y2xzr3=xzr2x2+y2=rcosθrsinθcosϕr2rsinθ=zxr2x2+y2=rcosθrsinθcosϕr2rsinθ=cosθcosϕr=zx(x2+y2+z2)x2+y2=rcosθrsinθcosϕr2rsinθ=cosθcosϕr=cosϕr\frac{\partial \theta}{\partial x} = \frac{\partial}{\partial x} \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}} = -\frac{1}{\sqrt{1 - (\frac{z}{\sqrt{x^2 + y^2 + z^2}})^2}} \cdot z (-\frac{1}{2}) (x^2 + y^2 + z^2)^{-\frac{3}{2}} (2x) = \frac{1}{\sqrt{\frac{x^2 + y^2}{x^2 + y^2 + z^2}}} \cdot \frac{xz}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} = \frac{\sqrt{x^2 + y^2 + z^2}}{\sqrt{x^2 + y^2}} \cdot \frac{xz}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} = \frac{r}{\sqrt{x^2 + y^2}} \cdot \frac{xz}{r^3} = \frac{xz}{r^2 \sqrt{x^2 + y^2}} = \frac{r \cos \theta \cdot r \sin \theta \cos \phi}{r^2 r \sin \theta} = \frac{z x}{r^2 \sqrt{x^2+y^2}} = \frac{r\cos \theta r \sin \theta \cos \phi}{r^2 r \sin \theta} = \frac{\cos \theta \cos \phi}{r} = \frac{z x}{(x^2 + y^2 + z^2)\sqrt{x^2 + y^2}} = \frac{r \cos \theta \cdot r \sin \theta \cos \phi}{r^2 \cdot r\sin \theta} = \frac{\cos \theta \cos \phi}{r} = \frac{\cos \phi}{r}
θx=xzr2x2+y2\frac{\partial \theta}{\partial x} = \frac{xz}{r^2\sqrt{x^2+y^2}}
θz=zarccoszx2+y2+z2=11(zx2+y2+z2)2x2+y2+z2z12(x2+y2+z2)12(2z)x2+y2+z2=x2+y2+z2x2+y2x2+y2+z2z2(x2+y2+z2)32=x2+y2+z2x2+y2x2+y2(x2+y2+z2)32=1x2+y2=x2+y2r2\frac{\partial \theta}{\partial z} = \frac{\partial}{\partial z} \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}} = -\frac{1}{\sqrt{1 - (\frac{z}{\sqrt{x^2 + y^2 + z^2}})^2}} \cdot \frac{\sqrt{x^2 + y^2 + z^2} - z \frac{1}{2} (x^2 + y^2 + z^2)^{-\frac{1}{2}} (2z)}{x^2 + y^2 + z^2} = -\frac{\sqrt{x^2 + y^2 + z^2}}{\sqrt{x^2 + y^2}} \cdot \frac{x^2 + y^2 + z^2 - z^2}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} = -\frac{\sqrt{x^2 + y^2 + z^2}}{\sqrt{x^2 + y^2}} \cdot \frac{x^2 + y^2}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} = -\frac{1}{\sqrt{x^2 + y^2}} = - \frac{\sqrt{x^2 + y^2}}{r^2}
θz=x2+y2r2=rsinθr2=sinθr\frac{\partial \theta}{\partial z} = - \frac{\sqrt{x^2 + y^2}}{r^2} = - \frac{r \sin \theta}{r^2} = - \frac{\sin \theta}{r}

3. 最終的な答え

rx=sinθcosϕ\frac{\partial r}{\partial x} = \sin \theta \cos \phi
ϕx=sinϕrsinθ\frac{\partial \phi}{\partial x} = -\frac{\sin \phi}{r \sin \theta}
θx=cosθcosϕr\frac{\partial \theta}{\partial x} = \frac{\cos \theta \cos \phi}{r}
θz=sinθr\frac{\partial \theta}{\partial z} = -\frac{\sin \theta}{r}

「解析学」の関連問題