与えられた関数 $f(x)$ に対して、導関数の定義に従って導関数 $f'(x)$ を求める問題です。 (1) $f(x) = 2x$ (2) $f(x) = -x^2$ (3) $f(x) = -2$解析学微分導関数極限関数の微分2025/5/71. 問題の内容与えられた関数 f(x)f(x)f(x) に対して、導関数の定義に従って導関数 f′(x)f'(x)f′(x) を求める問題です。(1) f(x)=2xf(x) = 2xf(x)=2x(2) f(x)=−x2f(x) = -x^2f(x)=−x2(3) f(x)=−2f(x) = -2f(x)=−22. 解き方の手順導関数の定義は次の通りです。f′(x)=limh→0f(x+h)−f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}f′(x)=limh→0hf(x+h)−f(x)(1) f(x)=2xf(x) = 2xf(x)=2xの場合:f(x+h)=2(x+h)=2x+2hf(x+h) = 2(x+h) = 2x + 2hf(x+h)=2(x+h)=2x+2hf(x+h)−f(x)=(2x+2h)−2x=2hf(x+h) - f(x) = (2x + 2h) - 2x = 2hf(x+h)−f(x)=(2x+2h)−2x=2hf(x+h)−f(x)h=2hh=2\frac{f(x+h) - f(x)}{h} = \frac{2h}{h} = 2hf(x+h)−f(x)=h2h=2f′(x)=limh→02=2f'(x) = \lim_{h \to 0} 2 = 2f′(x)=limh→02=2(2) f(x)=−x2f(x) = -x^2f(x)=−x2の場合:f(x+h)=−(x+h)2=−(x2+2xh+h2)=−x2−2xh−h2f(x+h) = -(x+h)^2 = -(x^2 + 2xh + h^2) = -x^2 - 2xh - h^2f(x+h)=−(x+h)2=−(x2+2xh+h2)=−x2−2xh−h2f(x+h)−f(x)=(−x2−2xh−h2)−(−x2)=−2xh−h2f(x+h) - f(x) = (-x^2 - 2xh - h^2) - (-x^2) = -2xh - h^2f(x+h)−f(x)=(−x2−2xh−h2)−(−x2)=−2xh−h2f(x+h)−f(x)h=−2xh−h2h=−2x−h\frac{f(x+h) - f(x)}{h} = \frac{-2xh - h^2}{h} = -2x - hhf(x+h)−f(x)=h−2xh−h2=−2x−hf′(x)=limh→0(−2x−h)=−2xf'(x) = \lim_{h \to 0} (-2x - h) = -2xf′(x)=limh→0(−2x−h)=−2x(3) f(x)=−2f(x) = -2f(x)=−2の場合:f(x+h)=−2f(x+h) = -2f(x+h)=−2f(x+h)−f(x)=−2−(−2)=0f(x+h) - f(x) = -2 - (-2) = 0f(x+h)−f(x)=−2−(−2)=0f(x+h)−f(x)h=0h=0\frac{f(x+h) - f(x)}{h} = \frac{0}{h} = 0hf(x+h)−f(x)=h0=0f′(x)=limh→00=0f'(x) = \lim_{h \to 0} 0 = 0f′(x)=limh→00=03. 最終的な答え(1) f′(x)=2f'(x) = 2f′(x)=2(2) f′(x)=−2xf'(x) = -2xf′(x)=−2x(3) f′(x)=0f'(x) = 0f′(x)=0