次の式を簡単にせよという問題です。 $\frac{2}{1+\sqrt{2}+\sqrt{3}} + \sqrt{2-\sqrt{3}}$代数学式の計算有理化根号2025/5/71. 問題の内容次の式を簡単にせよという問題です。21+2+3+2−3\frac{2}{1+\sqrt{2}+\sqrt{3}} + \sqrt{2-\sqrt{3}}1+2+32+2−32. 解き方の手順まず、21+2+3\frac{2}{1+\sqrt{2}+\sqrt{3}}1+2+32 の分母を有理化します。分母と分子に 1+2−31+\sqrt{2} - \sqrt{3}1+2−3 を掛けます。21+2+3=2(1+2−3)(1+2+3)(1+2−3)=2(1+2−3)(1+2)2−(3)2\frac{2}{1+\sqrt{2}+\sqrt{3}} = \frac{2(1+\sqrt{2}-\sqrt{3})}{(1+\sqrt{2}+\sqrt{3})(1+\sqrt{2}-\sqrt{3})} = \frac{2(1+\sqrt{2}-\sqrt{3})}{(1+\sqrt{2})^2 - (\sqrt{3})^2}1+2+32=(1+2+3)(1+2−3)2(1+2−3)=(1+2)2−(3)22(1+2−3)(1+2)2−(3)2=1+22+2−3=22(1+\sqrt{2})^2 - (\sqrt{3})^2 = 1 + 2\sqrt{2} + 2 - 3 = 2\sqrt{2}(1+2)2−(3)2=1+22+2−3=22したがって、21+2+3=2(1+2−3)22=1+2−32=2(1+2−3)2=2+2−62\frac{2}{1+\sqrt{2}+\sqrt{3}} = \frac{2(1+\sqrt{2}-\sqrt{3})}{2\sqrt{2}} = \frac{1+\sqrt{2}-\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{2}(1+\sqrt{2}-\sqrt{3})}{2} = \frac{\sqrt{2}+2-\sqrt{6}}{2}1+2+32=222(1+2−3)=21+2−3=22(1+2−3)=22+2−6次に、2−3\sqrt{2-\sqrt{3}}2−3 を簡単にします。2−3=4−232=(3−1)22=3−12=6−22\sqrt{2-\sqrt{3}} = \sqrt{\frac{4-2\sqrt{3}}{2}} = \sqrt{\frac{(\sqrt{3}-1)^2}{2}} = \frac{\sqrt{3}-1}{\sqrt{2}} = \frac{\sqrt{6}-\sqrt{2}}{2}2−3=24−23=2(3−1)2=23−1=26−2したがって、21+2+3+2−3=2+2−62+6−22=2+2−6+6−22=22=1\frac{2}{1+\sqrt{2}+\sqrt{3}} + \sqrt{2-\sqrt{3}} = \frac{\sqrt{2}+2-\sqrt{6}}{2} + \frac{\sqrt{6}-\sqrt{2}}{2} = \frac{\sqrt{2}+2-\sqrt{6}+\sqrt{6}-\sqrt{2}}{2} = \frac{2}{2} = 11+2+32+2−3=22+2−6+26−2=22+2−6+6−2=22=13. 最終的な答え1