各問題について、分配法則を用いて展開し、同類項をまとめることで計算を進めます。
(1) (x2+5x+3)(x−4) =x2(x−4)+5x(x−4)+3(x−4) =x3−4x2+5x2−20x+3x−12 =x3+x2−17x−12 (2) (x2−2xy−y2)(x−3y) =x2(x−3y)−2xy(x−3y)−y2(x−3y) =x3−3x2y−2x2y+6xy2−xy2+3y3 =x3−5x2y+5xy2+3y3 (3) (x2−3x+5)(2x2−5x+1) =x2(2x2−5x+1)−3x(2x2−5x+1)+5(2x2−5x+1) =2x4−5x3+x2−6x3+15x2−3x+10x2−25x+5 =2x4−11x3+26x2−28x+5 (4) (2x2−3xy−y2)(3x2−2xy+y2) =2x2(3x2−2xy+y2)−3xy(3x2−2xy+y2)−y2(3x2−2xy+y2) =6x4−4x3y+2x2y2−9x3y+6x2y2−3xy3−3x2y2+2xy3−y4 =6x4−13x3y+5x2y2−xy3−y4