与えられた3つの1次方程式をそれぞれ解きます。 (1) $5x + 2 = 2x + 7$ (2) $0.5x = 0.2x - 6$ (3) $\frac{2}{3}x - 4 = \frac{1}{2}x - 3$

代数学一次方程式方程式計算
2025/5/7

1. 問題の内容

与えられた3つの1次方程式をそれぞれ解きます。
(1) 5x+2=2x+75x + 2 = 2x + 7
(2) 0.5x=0.2x60.5x = 0.2x - 6
(3) 23x4=12x3\frac{2}{3}x - 4 = \frac{1}{2}x - 3

2. 解き方の手順

(1)
5x+2=2x+75x + 2 = 2x + 7
5x2x=725x - 2x = 7 - 2
3x=53x = 5
x=53x = \frac{5}{3}
(2)
0.5x=0.2x60.5x = 0.2x - 6
0.5x0.2x=60.5x - 0.2x = -6
0.3x=60.3x = -6
x=60.3=603=20x = \frac{-6}{0.3} = \frac{-60}{3} = -20
(3)
23x4=12x3\frac{2}{3}x - 4 = \frac{1}{2}x - 3
両辺に6をかけます。
6(23x4)=6(12x3)6 \cdot (\frac{2}{3}x - 4) = 6 \cdot (\frac{1}{2}x - 3)
4x24=3x184x - 24 = 3x - 18
4x3x=18+244x - 3x = -18 + 24
x=6x = 6

3. 最終的な答え

(1) x=53x = \frac{5}{3}
(2) x=20x = -20
(3) x=6x = 6

「代数学」の関連問題

与えられた式 $x^2 + xy - 2x - 3y - 3$ を因数分解する問題です。

因数分解多項式
2025/5/7

多項式 $3x^2 - 4x + 5$ を多項式 $B$ で割ると、商が $x - 1$、余りが $4$ である。 多項式 $x^3 - 2x^2 + 3x - 3$ を多項式 $B$ で割ると、商が...

多項式割り算因数分解代入
2025/5/7

$\|a\|=3$, $\|b\|=4$, $a \cdot b = 4$ のとき、$\|a-b\|^2$ の値を求めよ。

ベクトル内積ベクトルの大きさ
2025/5/7

問題は、与えられた条件を満たす多項式 $A$ を求めるものです。 (1) 多項式 $A$ を $x+2$ で割ると、商が $x+3$、余りが $-1$ となる。 (2) 多項式 $A$ を $x^2+...

多項式割り算因数定理剰余定理
2025/5/7

問題は、多項式$A$を多項式$B$で割ったときの商と余りを求める問題です。画像には3つの問題が含まれています。 (2) $A = x^3 - 4x^2 - 5$, $B = x-3$ (3) $A =...

多項式の割り算多項式筆算
2025/5/7

問題23の(2)と問題24の(1)を展開する問題です。 問題23(2): $(x^2+4)(x+2)(x-2)$ を展開する。 問題24(1): $(2x+y)^2(2x-y)^2$ を展開する。

展開多項式因数分解公式
2025/5/7

多項式 $A = x^3 - 7x + 6$ と $B = x^2 - 3 + 2x$ が与えられています。この問題で何を解くべきか指示がありません。最大公約数(GCD)を求める問題と仮定します。

多項式因数分解最大公約数GCD
2025/5/7

多項式 $A = 2x^3 + 5x^2 - 2x + 4$ を多項式 $B = x^2 - x + 2$ で割る問題です。割り算の結果(商と余り)を求める必要があります。

多項式多項式の割り算余り
2025/5/7

多項式 $A = x^3 - 4x^2 - 5$ を $B = x - 3$ で割った時の商と余りを求めます。

多項式の割り算因数定理商と余り
2025/5/7

画像にある21番と22番の問題を解きます。 21番は次の式を展開します。 (1) $(a-b+2)(a-b-5)$ (2) $(x-y+z)^2$ 22番は次の式を展開します。 (1) $(a+2b+...

式の展開多項式因数分解展開公式
2025/5/7