ベクトル $\vec{a}$ の大きさが3、ベクトル $\vec{b}$ の大きさが2、ベクトル $\vec{a}$ と $\vec{b}$ のなす角が30°のとき、内積 $\vec{a} \cdot \vec{b}$ の値を求める。

代数学ベクトル内積三角関数ベクトルの演算
2025/5/7

1. 問題の内容

ベクトル a\vec{a} の大きさが3、ベクトル b\vec{b} の大きさが2、ベクトル a\vec{a}b\vec{b} のなす角が30°のとき、内積 ab\vec{a} \cdot \vec{b} の値を求める。

2. 解き方の手順

ベクトルの内積の定義を利用します。
内積 ab\vec{a} \cdot \vec{b} は、次のように表されます。
ab=abcosθ\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos{\theta}
ここで、a|\vec{a}| はベクトル a\vec{a} の大きさ、b|\vec{b}| はベクトル b\vec{b} の大きさ、θ\theta はベクトル a\vec{a}b\vec{b} のなす角です。
問題文より、a=3|\vec{a}| = 3, b=2|\vec{b}| = 2, θ=30\theta = 30^\circ なので、これらを上記の式に代入します。
ab=32cos30\vec{a} \cdot \vec{b} = 3 \cdot 2 \cdot \cos{30^\circ}
cos30=32\cos{30^\circ} = \frac{\sqrt{3}}{2} なので、
ab=3232=33\vec{a} \cdot \vec{b} = 3 \cdot 2 \cdot \frac{\sqrt{3}}{2} = 3\sqrt{3}

3. 最終的な答え

333\sqrt{3}

「代数学」の関連問題

与えられた数式 $(-2x^2)^3 \times x$ を計算して、簡略化された形を求めます。

多項式指数法則計算
2025/5/9

与えられた数式 $(a^2b)^3$ を簡略化する問題です。

指数法則式の簡略化代数
2025/5/9

与えられた複素ベクトルの組が線形独立か線形従属かを判定する問題です。具体的には、以下の2つの組について判定します。 (1) $\begin{bmatrix} 2+3i \\ 3-2i \end{bma...

線形代数線形独立線形従属複素ベクトル行列式
2025/5/9

与えられたベクトルの組が$K^3$の基底になるかどうか判定する問題です。具体的には、以下の2つの組について判定します。 (1) $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bm...

線形代数ベクトル基底線形独立行列式
2025/5/9

$a, b$ は実数で、$ab > 0$ のとき、次の1~5の中から正しいものを選ぶ問題です。 1. $a < b \Rightarrow a^2 < b^2$

不等式実数大小関係絶対値
2025/5/9

不等式 $(x-3)(x-6) > 0$ の解を全て求め、選択肢の中から正しいものを選ぶ。

不等式二次不等式解の範囲
2025/5/9

$\log_2 12 - \log_2 3$ の値を求め、選択肢の中から正しいものを選びます。

対数対数の性質計算
2025/5/9

$\log_2{\frac{1}{8}}$ の値を求める問題です。

対数指数計算
2025/5/9

3次方程式 $x^3 - 3x^2 + ax + b = 0$ が $1+3i$ を解に持つとき、実数の定数 $a$, $b$ の値を求め、他の解を求めよ。

三次方程式複素数解と係数の関係
2025/5/9

$8^{\frac{1}{2}}$ の値を求め、選択肢の中から正しいものを選びます。

指数累乗根指数法則計算
2025/5/9