与えられた9個の関数をそれぞれ微分せよ。解析学微分三角関数合成関数の微分2025/5/8わかりました。画像の問題を解きます。1. 問題の内容与えられた9個の関数をそれぞれ微分せよ。2. 解き方の手順各関数について、微分の公式と合成関数の微分法を適用して解きます。(1) y=cos(3x+π6)y = \cos(3x + \frac{\pi}{6})y=cos(3x+6π)y′=−sin(3x+π6)⋅3=−3sin(3x+π6)y' = -\sin(3x + \frac{\pi}{6}) \cdot 3 = -3\sin(3x + \frac{\pi}{6})y′=−sin(3x+6π)⋅3=−3sin(3x+6π)(2) y=tan2xy = \tan^2 xy=tan2xy′=2tanx⋅(tanx)′=2tanx⋅1cos2x=2sinxcos3xy' = 2\tan x \cdot (\tan x)' = 2\tan x \cdot \frac{1}{\cos^2 x} = \frac{2\sin x}{\cos^3 x}y′=2tanx⋅(tanx)′=2tanx⋅cos2x1=cos3x2sinx(3) y=1+sinxy = \sqrt{1 + \sin x}y=1+sinxy′=121+sinx⋅(1+sinx)′=cosx21+sinxy' = \frac{1}{2\sqrt{1 + \sin x}} \cdot (1 + \sin x)' = \frac{\cos x}{2\sqrt{1 + \sin x}}y′=21+sinx1⋅(1+sinx)′=21+sinxcosx(4) y=1sinx=(sinx)−1y = \frac{1}{\sin x} = (\sin x)^{-1}y=sinx1=(sinx)−1y′=−(sinx)−2⋅(sinx)′=−cosxsin2xy' = -(\sin x)^{-2} \cdot (\sin x)' = -\frac{\cos x}{\sin^2 x}y′=−(sinx)−2⋅(sinx)′=−sin2xcosx(5) y=11+cosx=(1+cosx)−1y = \frac{1}{1 + \cos x} = (1 + \cos x)^{-1}y=1+cosx1=(1+cosx)−1y′=−(1+cosx)−2⋅(1+cosx)′=sinx(1+cosx)2y' = -(1 + \cos x)^{-2} \cdot (1 + \cos x)' = \frac{\sin x}{(1 + \cos x)^2}y′=−(1+cosx)−2⋅(1+cosx)′=(1+cosx)2sinx(6) y=cos3(2x)y = \cos^3(2x)y=cos3(2x)y′=3cos2(2x)⋅(cos(2x))′=3cos2(2x)⋅(−sin(2x)⋅2)=−6cos2(2x)sin(2x)y' = 3\cos^2(2x) \cdot (\cos(2x))' = 3\cos^2(2x) \cdot (-\sin(2x) \cdot 2) = -6\cos^2(2x)\sin(2x)y′=3cos2(2x)⋅(cos(2x))′=3cos2(2x)⋅(−sin(2x)⋅2)=−6cos2(2x)sin(2x)(7) y=sinx1−cosxy = \frac{\sin x}{1 - \cos x}y=1−cosxsinxy′=cosx(1−cosx)−sinx(sinx)(1−cosx)2=cosx−cos2x−sin2x(1−cosx)2=cosx−1(1−cosx)2=−11−cosxy' = \frac{\cos x (1 - \cos x) - \sin x (\sin x)}{(1 - \cos x)^2} = \frac{\cos x - \cos^2 x - \sin^2 x}{(1 - \cos x)^2} = \frac{\cos x - 1}{(1 - \cos x)^2} = -\frac{1}{1 - \cos x}y′=(1−cosx)2cosx(1−cosx)−sinx(sinx)=(1−cosx)2cosx−cos2x−sin2x=(1−cosx)2cosx−1=−1−cosx1(8) y=sinx⋅cos2xy = \sin x \cdot \cos^2 xy=sinx⋅cos2xy′=cosx⋅cos2x+sinx⋅(2cosx(−sinx))=cos3x−2sin2xcosx=cosx(cos2x−2sin2x)=cosx(cos2x−2(1−cos2x))=cosx(3cos2x−2)y' = \cos x \cdot \cos^2 x + \sin x \cdot (2\cos x (-\sin x)) = \cos^3 x - 2\sin^2 x \cos x = \cos x(\cos^2 x - 2\sin^2 x) = \cos x(\cos^2 x - 2(1 - \cos^2 x)) = \cos x(3\cos^2 x - 2)y′=cosx⋅cos2x+sinx⋅(2cosx(−sinx))=cos3x−2sin2xcosx=cosx(cos2x−2sin2x)=cosx(cos2x−2(1−cos2x))=cosx(3cos2x−2)(9) y=sinx−cosxsinx+cosxy = \frac{\sin x - \cos x}{\sin x + \cos x}y=sinx+cosxsinx−cosxy′=(cosx+sinx)(sinx+cosx)−(sinx−cosx)(cosx−sinx)(sinx+cosx)2=(sinx+cosx)2+(sinx−cosx)2(sinx+cosx)2=sin2x+2sinxcosx+cos2x+sin2x−2sinxcosx+cos2x(sinx+cosx)2=2(sin2x+cos2x)(sinx+cosx)2=2(sinx+cosx)2y' = \frac{(\cos x + \sin x)(\sin x + \cos x) - (\sin x - \cos x)(\cos x - \sin x)}{(\sin x + \cos x)^2} = \frac{(\sin x + \cos x)^2 + (\sin x - \cos x)^2}{(\sin x + \cos x)^2} = \frac{\sin^2 x + 2\sin x \cos x + \cos^2 x + \sin^2 x - 2\sin x \cos x + \cos^2 x}{(\sin x + \cos x)^2} = \frac{2(\sin^2 x + \cos^2 x)}{(\sin x + \cos x)^2} = \frac{2}{(\sin x + \cos x)^2}y′=(sinx+cosx)2(cosx+sinx)(sinx+cosx)−(sinx−cosx)(cosx−sinx)=(sinx+cosx)2(sinx+cosx)2+(sinx−cosx)2=(sinx+cosx)2sin2x+2sinxcosx+cos2x+sin2x−2sinxcosx+cos2x=(sinx+cosx)22(sin2x+cos2x)=(sinx+cosx)223. 最終的な答え(1) y′=−3sin(3x+π6)y' = -3\sin(3x + \frac{\pi}{6})y′=−3sin(3x+6π)(2) y′=2sinxcos3xy' = \frac{2\sin x}{\cos^3 x}y′=cos3x2sinx(3) y′=cosx21+sinxy' = \frac{\cos x}{2\sqrt{1 + \sin x}}y′=21+sinxcosx(4) y′=−cosxsin2xy' = -\frac{\cos x}{\sin^2 x}y′=−sin2xcosx(5) y′=sinx(1+cosx)2y' = \frac{\sin x}{(1 + \cos x)^2}y′=(1+cosx)2sinx(6) y′=−6cos2(2x)sin(2x)y' = -6\cos^2(2x)\sin(2x)y′=−6cos2(2x)sin(2x)(7) y′=−11−cosxy' = -\frac{1}{1 - \cos x}y′=−1−cosx1(8) y′=cosx(3cos2x−2)y' = \cos x(3\cos^2 x - 2)y′=cosx(3cos2x−2)(9) y′=2(sinx+cosx)2y' = \frac{2}{(\sin x + \cos x)^2}y′=(sinx+cosx)22