$\frac{\sqrt{2} + 1}{\sqrt{2} - 1}$ の値を求めます。

算数有理化平方根計算
2025/5/8

1. 問題の内容

2+121\frac{\sqrt{2} + 1}{\sqrt{2} - 1} の値を求めます。

2. 解き方の手順

分母を有理化するために、分母と分子に 2+1\sqrt{2} + 1 を掛けます。
2+121=(2+1)(2+1)(21)(2+1)\frac{\sqrt{2} + 1}{\sqrt{2} - 1} = \frac{(\sqrt{2} + 1)(\sqrt{2} + 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)}
分母は (ab)(a+b)=a2b2(a-b)(a+b) = a^2 - b^2 の公式を使って計算できます。
(21)(2+1)=(2)2(1)2=21=1(\sqrt{2} - 1)(\sqrt{2} + 1) = (\sqrt{2})^2 - (1)^2 = 2 - 1 = 1
分子は (2+1)2=(2)2+2(2)(1)+12=2+22+1=3+22(\sqrt{2} + 1)^2 = (\sqrt{2})^2 + 2(\sqrt{2})(1) + 1^2 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2}
したがって、
(2+1)(2+1)(21)(2+1)=3+221=3+22\frac{(\sqrt{2} + 1)(\sqrt{2} + 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \frac{3 + 2\sqrt{2}}{1} = 3 + 2\sqrt{2}

3. 最終的な答え

3+223 + 2\sqrt{2}

「算数」の関連問題

与えられた数式の値を計算します。数式は $\sqrt{\sqrt[4]{256}}$ です。

累乗根計算
2025/5/8

4枚のカードA、B、C、Dを並べる方法は何通りあるか、樹形図を書いて求めよ。

順列場合の数組み合わせ
2025/5/8

循環小数 $0.4\dot{5}\dot{6}$ を分数で表す問題です。

分数循環小数小数
2025/5/8

この問題は、分数を小数に変換する、循環小数を分数に変換する、数の絶対値を計算する、2点間の距離を計算する、循環小数の特定の桁の数字を求める、数の整数部分と小数部分を求める、平方根を求める、などの様々な...

分数小数循環小数絶対値距離平方根
2025/5/8

与えられた数式 $\sqrt{3} + \sqrt{27} - \sqrt{75}$ を計算し、できるだけ簡単な形で表す問題です。

平方根計算式の簡略化根号
2025/5/8

与えられた式 $\sqrt{50} - 2\sqrt{32} + \sqrt{72}$ を計算します。

平方根根号の計算計算
2025/5/8

与えられた数式の値を計算します。数式は$-\sqrt{\frac{25}{64}}$です。

平方根分数計算
2025/5/8

与えられた式 $\frac{1}{\sqrt{5} - \sqrt{3}}$ を計算し、分母を有理化する。

分母の有理化平方根の計算
2025/5/8

与えられた分数の分母を有理化する問題です。分数は $\frac{4}{3\sqrt{2}}$ です。

分数有理化平方根計算
2025/5/8

与えられた分数 $\frac{3/2}{4}$ を計算します。

分数計算割り算
2025/5/8