$S_n = 1 + 2 \cdot \frac{1}{3} + 3 (\frac{1}{3})^2 + 4 (\frac{1}{3})^3 + \cdots + n (\frac{1}{3})^{n-1}$ を $n$ の式で表す。解析学級数等比数列数列の和2025/5/91. 問題の内容Sn=1+2⋅13+3(13)2+4(13)3+⋯+n(13)n−1S_n = 1 + 2 \cdot \frac{1}{3} + 3 (\frac{1}{3})^2 + 4 (\frac{1}{3})^3 + \cdots + n (\frac{1}{3})^{n-1}Sn=1+2⋅31+3(31)2+4(31)3+⋯+n(31)n−1 を nnn の式で表す。2. 解き方の手順まず、SnS_nSn を書き下します。Sn=1+2⋅13+3(13)2+4(13)3+⋯+n(13)n−1S_n = 1 + 2 \cdot \frac{1}{3} + 3 (\frac{1}{3})^2 + 4 (\frac{1}{3})^3 + \cdots + n (\frac{1}{3})^{n-1}Sn=1+2⋅31+3(31)2+4(31)3+⋯+n(31)n−1次に、SnS_nSn に 13\frac{1}{3}31 を掛けます。13Sn=13+2(13)2+3(13)3+⋯+(n−1)(13)n−1+n(13)n\frac{1}{3} S_n = \frac{1}{3} + 2 (\frac{1}{3})^2 + 3 (\frac{1}{3})^3 + \cdots + (n-1) (\frac{1}{3})^{n-1} + n (\frac{1}{3})^n31Sn=31+2(31)2+3(31)3+⋯+(n−1)(31)n−1+n(31)nSn−13SnS_n - \frac{1}{3} S_nSn−31Sn を計算します。Sn−13Sn=(1+2⋅13+3(13)2+4(13)3+⋯+n(13)n−1)−(13+2(13)2+3(13)3+⋯+(n−1)(13)n−1+n(13)n)S_n - \frac{1}{3} S_n = (1 + 2 \cdot \frac{1}{3} + 3 (\frac{1}{3})^2 + 4 (\frac{1}{3})^3 + \cdots + n (\frac{1}{3})^{n-1}) - (\frac{1}{3} + 2 (\frac{1}{3})^2 + 3 (\frac{1}{3})^3 + \cdots + (n-1) (\frac{1}{3})^{n-1} + n (\frac{1}{3})^n)Sn−31Sn=(1+2⋅31+3(31)2+4(31)3+⋯+n(31)n−1)−(31+2(31)2+3(31)3+⋯+(n−1)(31)n−1+n(31)n)23Sn=1+13+(13)2+(13)3+⋯+(13)n−1−n(13)n\frac{2}{3} S_n = 1 + \frac{1}{3} + (\frac{1}{3})^2 + (\frac{1}{3})^3 + \cdots + (\frac{1}{3})^{n-1} - n (\frac{1}{3})^n32Sn=1+31+(31)2+(31)3+⋯+(31)n−1−n(31)n右辺の 1+13+(13)2+(13)3+⋯+(13)n−11 + \frac{1}{3} + (\frac{1}{3})^2 + (\frac{1}{3})^3 + \cdots + (\frac{1}{3})^{n-1}1+31+(31)2+(31)3+⋯+(31)n−1 は初項 111, 公比 13\frac{1}{3}31, 項数 nnn の等比数列の和なので、1+13+(13)2+(13)3+⋯+(13)n−1=1(1−(13)n)1−13=1−(13)n23=32(1−(13)n)1 + \frac{1}{3} + (\frac{1}{3})^2 + (\frac{1}{3})^3 + \cdots + (\frac{1}{3})^{n-1} = \frac{1 (1 - (\frac{1}{3})^n)}{1 - \frac{1}{3}} = \frac{1 - (\frac{1}{3})^n}{\frac{2}{3}} = \frac{3}{2} (1 - (\frac{1}{3})^n)1+31+(31)2+(31)3+⋯+(31)n−1=1−311(1−(31)n)=321−(31)n=23(1−(31)n)よって、23Sn=32(1−(13)n)−n(13)n\frac{2}{3} S_n = \frac{3}{2} (1 - (\frac{1}{3})^n) - n (\frac{1}{3})^n32Sn=23(1−(31)n)−n(31)n23Sn=32−32(13)n−n(13)n\frac{2}{3} S_n = \frac{3}{2} - \frac{3}{2} (\frac{1}{3})^n - n (\frac{1}{3})^n32Sn=23−23(31)n−n(31)n23Sn=32−(32+n)(13)n\frac{2}{3} S_n = \frac{3}{2} - (\frac{3}{2} + n) (\frac{1}{3})^n32Sn=23−(23+n)(31)nSn=32⋅32−(32+n)(13)n⋅32S_n = \frac{3}{2} \cdot \frac{3}{2} - (\frac{3}{2} + n) (\frac{1}{3})^n \cdot \frac{3}{2}Sn=23⋅23−(23+n)(31)n⋅23Sn=94−32(32+n)(13)nS_n = \frac{9}{4} - \frac{3}{2} (\frac{3}{2} + n) (\frac{1}{3})^nSn=49−23(23+n)(31)nSn=94−3(3+2n)4⋅3nS_n = \frac{9}{4} - \frac{3(3+2n)}{4 \cdot 3^n}Sn=49−4⋅3n3(3+2n)Sn=94−3+2n4⋅3n−1S_n = \frac{9}{4} - \frac{3+2n}{4 \cdot 3^{n-1}}Sn=49−4⋅3n−13+2n3. 最終的な答えSn=94−2n+34⋅3n−1S_n = \frac{9}{4} - \frac{2n+3}{4 \cdot 3^{n-1}}Sn=49−4⋅3n−12n+3