与えられた式 $x^6 - y^6$ を因数分解します。代数学因数分解多項式式の展開乗法公式2025/5/101. 問題の内容与えられた式 x6−y6x^6 - y^6x6−y6 を因数分解します。2. 解き方の手順まず、x6−y6x^6 - y^6x6−y6 を (x3)2−(y3)2(x^3)^2 - (y^3)^2(x3)2−(y3)2 と見て、2乗の差の公式 a2−b2=(a+b)(a−b)a^2 - b^2 = (a + b)(a - b)a2−b2=(a+b)(a−b) を適用します。x6−y6=(x3)2−(y3)2=(x3+y3)(x3−y3)x^6 - y^6 = (x^3)^2 - (y^3)^2 = (x^3 + y^3)(x^3 - y^3)x6−y6=(x3)2−(y3)2=(x3+y3)(x3−y3)次に、x3+y3x^3 + y^3x3+y3 と x3−y3x^3 - y^3x3−y3 をそれぞれ因数分解します。x3+y3x^3 + y^3x3+y3 は和の3乗の公式 a3+b3=(a+b)(a2−ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2)a3+b3=(a+b)(a2−ab+b2) を用いて因数分解します。x3−y3x^3 - y^3x3−y3 は差の3乗の公式 a3−b3=(a−b)(a2+ab+b2)a^3 - b^3 = (a - b)(a^2 + ab + b^2)a3−b3=(a−b)(a2+ab+b2) を用いて因数分解します。x3+y3=(x+y)(x2−xy+y2)x^3 + y^3 = (x + y)(x^2 - xy + y^2)x3+y3=(x+y)(x2−xy+y2)x3−y3=(x−y)(x2+xy+y2)x^3 - y^3 = (x - y)(x^2 + xy + y^2)x3−y3=(x−y)(x2+xy+y2)したがって、x6−y6=(x3+y3)(x3−y3)=(x+y)(x2−xy+y2)(x−y)(x2+xy+y2)x^6 - y^6 = (x^3 + y^3)(x^3 - y^3) = (x + y)(x^2 - xy + y^2)(x - y)(x^2 + xy + y^2)x6−y6=(x3+y3)(x3−y3)=(x+y)(x2−xy+y2)(x−y)(x2+xy+y2)並び替えて、x6−y6=(x+y)(x−y)(x2−xy+y2)(x2+xy+y2)x^6 - y^6 = (x + y)(x - y)(x^2 - xy + y^2)(x^2 + xy + y^2)x6−y6=(x+y)(x−y)(x2−xy+y2)(x2+xy+y2)さらに、x2−y2=(x+y)(x−y)x^2 - y^2 = (x+y)(x-y)x2−y2=(x+y)(x−y) であるので、x6−y6=(x2−y2)(x4+x2y2+y4)x^6 - y^6 = (x^2 - y^2)(x^4 + x^2y^2 + y^4)x6−y6=(x2−y2)(x4+x2y2+y4)とすることもできます。また、x6−y6x^6 - y^6x6−y6を(x2)3−(y2)3(x^2)^3 - (y^2)^3(x2)3−(y2)3と考えてx6−y6=(x2−y2)(x4+x2y2+y4)=(x−y)(x+y)(x4+x2y2+y4)x^6 - y^6 = (x^2-y^2)(x^4 + x^2y^2 + y^4) = (x-y)(x+y)(x^4 + x^2y^2 + y^4)x6−y6=(x2−y2)(x4+x2y2+y4)=(x−y)(x+y)(x4+x2y2+y4)x4+x2y2+y4x^4 + x^2y^2 + y^4x4+x2y2+y4の部分は、x4+2x2y2+y4−x2y2=(x2+y2)2−(xy)2x^4 + 2x^2y^2 + y^4 - x^2y^2 = (x^2 + y^2)^2 - (xy)^2x4+2x2y2+y4−x2y2=(x2+y2)2−(xy)2となり、x4+x2y2+y4=(x2+y2+xy)(x2+y2−xy)x^4 + x^2y^2 + y^4 = (x^2 + y^2 + xy)(x^2 + y^2 - xy)x4+x2y2+y4=(x2+y2+xy)(x2+y2−xy) と因数分解できる。よって、x6−y6=(x−y)(x+y)(x2−xy+y2)(x2+xy+y2)x^6 - y^6 = (x - y)(x + y)(x^2 - xy + y^2)(x^2 + xy + y^2)x6−y6=(x−y)(x+y)(x2−xy+y2)(x2+xy+y2) となる。3. 最終的な答え(x−y)(x+y)(x2−xy+y2)(x2+xy+y2)(x - y)(x + y)(x^2 - xy + y^2)(x^2 + xy + y^2)(x−y)(x+y)(x2−xy+y2)(x2+xy+y2)