問題は、$(x^2 + 4x + 2)(x^2 - 4x + 2)$ を展開して簡単にすることです。

代数学式の展開因数分解多項式
2025/5/10

1. 問題の内容

問題は、(x2+4x+2)(x24x+2)(x^2 + 4x + 2)(x^2 - 4x + 2) を展開して簡単にすることです。

2. 解き方の手順

この問題を解くために、以下のように式を変形します。
x2+2x^2+2AA とおくと、与式は (A+4x)(A4x)(A+4x)(A-4x) となります。
これは和と差の積の形なので、A2(4x)2A^2 - (4x)^2 となります。
AAx2+2x^2+2 に戻すと、(x2+2)2(4x)2(x^2+2)^2 - (4x)^2 となります。
(x2+2)2(x^2+2)^2 を展開すると、x4+4x2+4x^4 + 4x^2 + 4 となります。
(4x)2(4x)^2 を展開すると、16x216x^2 となります。
したがって、x4+4x2+416x2x^4 + 4x^2 + 4 - 16x^2 となります。
最後に、同類項をまとめると、x412x2+4x^4 - 12x^2 + 4 となります。

3. 最終的な答え

x412x2+4x^4 - 12x^2 + 4

「代数学」の関連問題

二次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとします。 (1) グラフAをどのように平行移動すれば、原点を通り、最小値が-18となるか。 (2) グラフAをどの点について対称...

二次関数平行移動対称移動共有点
2025/5/10

2次方程式 $x^2 + 3x - 1 = 0$ の2つの解を$\alpha$, $\beta$とするとき、以下の値を求めます。 (1) $\alpha^2 + \beta^2$ (2) $(\alp...

二次方程式解と係数の関係式の計算
2025/5/10

2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとする。 (1) グラフAを平行移動して、原点を通り、最小値が-18となるようにするには、どのように平行移動すればよいか。 (2)...

二次関数グラフ平行移動対称移動共有点
2025/5/10

2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとする。 (1) グラフAを平行移動して原点を通り、最小値が-18となるような平行移動を求める。 (2) グラフAをある点について...

二次関数グラフ平行移動対称移動共有点
2025/5/10

与えられた2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとする。以下の3つの問いに答える。 (1) グラフAを平行移動して、原点を通り、最小値が -18 となるようにするには、...

二次関数グラフの平行移動グラフの対称移動共有点平方完成
2025/5/10

問題2:放物線を $x$ 軸方向に2, $y$ 軸方向に-3だけ平行移動し、さらに $x$ 軸に関して対称移動したところ、$y = -2x^2 - 3x + 4$ になった。もとの放物線の方程式を求め...

二次関数放物線平行移動対称移動グラフ
2025/5/10

2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとする。 (1) グラフAをどのように平行移動すれば、原点を通り、最小値が-18となるか。 (2) グラフAをどの点について対称移...

二次関数平行移動対称移動共有点
2025/5/10

2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAと呼ぶ。 (1) グラフAをどのように平行移動すれば、原点を通り、最小値が -18 となるか。 (2) グラフAをどの点について対...

二次関数平行移動対称移動グラフ共有点二次方程式
2025/5/10

放物線を $x$ 軸方向に $2$, $y$ 軸方向に $-3$ だけ平行移動し、さらに $x$ 軸に関して対称移動したとき、放物線 $y = -2x^2 - 3x + 4$ になった。もとの放物線の...

放物線平行移動対称移動二次関数関数のグラフ
2025/5/10

与えられた2次関数 $y = 3x^2 - x + 4$ のグラフと原点に関して対称なグラフを持つ関数を求めます。

二次関数グラフ対称性
2025/5/10