$A = 3x^2 + 4x - 1$、 $B = x^2 - 2x - 5$のとき、$3A - 2B$を計算し、$ax^2+bx+c$の形で表したときの、$a, b, c$を求める。

代数学多項式式の計算展開係数
2025/5/10

1. 問題の内容

A=3x2+4x1A = 3x^2 + 4x - 1B=x22x5B = x^2 - 2x - 5のとき、3A2B3A - 2Bを計算し、ax2+bx+cax^2+bx+cの形で表したときの、a,b,ca, b, cを求める。

2. 解き方の手順

まず、3A3A2B2Bを計算する。
3A=3(3x2+4x1)=9x2+12x33A = 3(3x^2 + 4x - 1) = 9x^2 + 12x - 3
2B=2(x22x5)=2x24x102B = 2(x^2 - 2x - 5) = 2x^2 - 4x - 10
次に、3A2B3A - 2Bを計算する。
3A2B=(9x2+12x3)(2x24x10)=9x2+12x32x2+4x+103A - 2B = (9x^2 + 12x - 3) - (2x^2 - 4x - 10) = 9x^2 + 12x - 3 - 2x^2 + 4x + 10
同類項をまとめる。
3A2B=(9x22x2)+(12x+4x)+(3+10)=7x2+16x+73A - 2B = (9x^2 - 2x^2) + (12x + 4x) + (-3 + 10) = 7x^2 + 16x + 7

3. 最終的な答え

3A2B=7x2+16x+73A - 2B = 7x^2 + 16x + 7
したがって、
カ = 7
キク = 16
ケ = 7

「代数学」の関連問題

次の連立不等式を解きます。 $ \begin{cases} (1-\sqrt{2})x > -1 \\ |2x+1| < 6 \end{cases} $

不等式連立不等式絶対値有理化
2025/5/10

問題2は、$x = -3$ のときの次の式の値を求める問題です。 (1) $4x+3$ (2) $-5-2x$ 問題3は、$x = 2$, $y = -3$ のときの次の式の値を求める問題です。 (1...

式の値代入一次式二次式
2025/5/10

与えられた数式を、文字式を書き表す規則に従って書き直す問題です。 具体的には、以下の9つの式を簡略化します。 (1) $a \times (-4)$ (2) $b \times a \times 3$...

文字式の簡略化計算規則乗算除算累乗
2025/5/10

実数 $a, b, c$ が $a+b+c = 1$, $ab+bc+ca = -2$, $abc = -1$ を満たすとき、以下の式の値を求めます。 (1) $a^2+b^2+c^2$ (2) $\...

対称式多項式の計算式の展開実数
2025/5/10

ベクトル $\vec{a} = (5, -2)$ と $\vec{b} = (-2, 3)$ が与えられているとき、以下のベクトルを $\vec{c} = m\vec{a} + n\vec{b}$ の...

ベクトル線形代数連立方程式ベクトルの線形結合
2025/5/10

与えられた式 $x^6 - 2x^3 + 1$ を因数分解します。

因数分解多項式三次式二次式
2025/5/10

$x + \frac{1}{x} = 3$ のとき、次の式の値を求めよ。 (1) $x^2 + \frac{1}{x^2}$ (2) $x^3 + \frac{1}{x^3}$ (3) $x^4 + ...

式の計算分数式展開二乗三乗
2025/5/10

与えられた数 $\frac{1}{\sqrt{3} + \sqrt{7} + \sqrt{10}}$ の分母を有理化せよ。

分母の有理化平方根式の計算
2025/5/10

与えられた式 $3x^2 + 2xy - y^2 + 7x + 3y + 4$ を因数分解する問題です。

因数分解多項式
2025/5/10

画像に写っている2つの式のうち、(7)の式 $4x^2 - y^2 + 2y - 1$ を因数分解する問題であると解釈します。

因数分解多項式二次式式の展開
2025/5/10