与えられた式 $(-2x^2)^3 \times x^4$ を計算し、その結果を $Ax^B$ の形で表したときの $A$ と $B$ を求める問題です。

代数学式の計算指数法則単項式
2025/5/10

1. 問題の内容

与えられた式 (2x2)3×x4(-2x^2)^3 \times x^4 を計算し、その結果を AxBAx^B の形で表したときの AABB を求める問題です。

2. 解き方の手順

まず、式 (2x2)3(-2x^2)^3 を計算します。
(2x2)3=(2)3×(x2)3=8x6(-2x^2)^3 = (-2)^3 \times (x^2)^3 = -8x^6
次に、(2x2)3(-2x^2)^3x4x^4 を掛け合わせます。
(8x6)×x4=8x6+4=8x10(-8x^6) \times x^4 = -8x^{6+4} = -8x^{10}
したがって、計算結果は 8x10-8x^{10} となります。
これは、AxBAx^B の形式で A=8A = -8B=10B = 10 となります。

3. 最終的な答え

コサ = -8
シス = 10

「代数学」の関連問題

与えられた単項式において、指定された文字に着目したときの係数と次数を求める問題です。 (1) $-abx^2$ の $a$ に着目 (2) $-3ax^5y^3$ の $x$ と $y$ に着目

単項式係数次数文字に着目
2025/5/10

(1) $a, b, c, d$ が正の数で $a > b, c > d$ のとき、$ac > bd$ であることを証明する。 (2) $x > y$ のとき、$\frac{x+2y}{3} > \f...

不等式証明
2025/5/10

二次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとします。 (1) グラフAをどのように平行移動すれば、原点を通り、最小値が-18となるか。 (2) グラフAをどの点について対称...

二次関数平行移動対称移動共有点
2025/5/10

2次方程式 $x^2 + 3x - 1 = 0$ の2つの解を$\alpha$, $\beta$とするとき、以下の値を求めます。 (1) $\alpha^2 + \beta^2$ (2) $(\alp...

二次方程式解と係数の関係式の計算
2025/5/10

2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとする。 (1) グラフAを平行移動して、原点を通り、最小値が-18となるようにするには、どのように平行移動すればよいか。 (2)...

二次関数グラフ平行移動対称移動共有点
2025/5/10

2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとする。 (1) グラフAを平行移動して原点を通り、最小値が-18となるような平行移動を求める。 (2) グラフAをある点について...

二次関数グラフ平行移動対称移動共有点
2025/5/10

与えられた2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとする。以下の3つの問いに答える。 (1) グラフAを平行移動して、原点を通り、最小値が -18 となるようにするには、...

二次関数グラフの平行移動グラフの対称移動共有点平方完成
2025/5/10

問題2:放物線を $x$ 軸方向に2, $y$ 軸方向に-3だけ平行移動し、さらに $x$ 軸に関して対称移動したところ、$y = -2x^2 - 3x + 4$ になった。もとの放物線の方程式を求め...

二次関数放物線平行移動対称移動グラフ
2025/5/10

2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとする。 (1) グラフAをどのように平行移動すれば、原点を通り、最小値が-18となるか。 (2) グラフAをどの点について対称移...

二次関数平行移動対称移動共有点
2025/5/10

2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAと呼ぶ。 (1) グラフAをどのように平行移動すれば、原点を通り、最小値が -18 となるか。 (2) グラフAをどの点について対...

二次関数平行移動対称移動グラフ共有点二次方程式
2025/5/10