$a=7$, $b=5$, $c=3$のとき、角$A$の大きさを求める問題です。

幾何学余弦定理三角形角度
2025/3/20

1. 問題の内容

a=7a=7, b=5b=5, c=3c=3のとき、角AAの大きさを求める問題です。

2. 解き方の手順

余弦定理を用いて角AAを求めます。余弦定理は、三角形の各辺の長さa,b,ca, b, cと角AAについて、以下の関係が成り立つことを示しています。
a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc\cos A
この式をcosA\cos Aについて解くと、
cosA=b2+c2a22bc\cos A = \frac{b^2 + c^2 - a^2}{2bc}
となります。
a=7a=7, b=5b=5, c=3c=3を代入すると、
cosA=52+3272253=25+94930=1530=12\cos A = \frac{5^2 + 3^2 - 7^2}{2 \cdot 5 \cdot 3} = \frac{25 + 9 - 49}{30} = \frac{-15}{30} = -\frac{1}{2}
したがって、cosA=12\cos A = -\frac{1}{2}となるAAの値を求めます。0<A<1800^\circ < A < 180^\circの範囲でcosA=12\cos A = -\frac{1}{2}となるのは、A=120A = 120^\circです。

3. 最終的な答え

A=120A = 120^\circ

「幾何学」の関連問題

$xy$平面上の格子点と、自然数$n$に対して定義された領域$R$内の格子点を頂点とする正方形の個数$q_n$に関する問題です。具体的には、以下の4つの問いに答えます。 (1) $xy$平面上の2点$...

格子点正方形座標平面数え上げ級数
2025/7/31

一辺の長さが10cmの正三角形ABCがある。辺BCの延長線上にCD=6cmとなる点Dをとると、AD=14cmとなった。直線ADについて、点Bと反対側に正三角形ADEとなるように点Eをとり、線分ADと線...

正三角形合同面積比角度相似
2025/7/31

問題は、 $0 \le \theta < 2\pi$ のとき、不等式 $\tan \theta < -\frac{1}{\sqrt{3}}$ を解くことです。

三角関数不等式単位円三角比
2025/7/31

2つの円が点Pで接している。一方の円には角$\theta$、67°をもつ三角形が内接しており、もう一方の円には47°をもつ三角形が内接している。角$\theta$の大きさを求める。

接線円周角の定理接弦定理三角形角度
2025/7/31

半径 $r$, $r'$ である2つの円の中心間の距離を $d$ とする。与えられた $r$, $r'$, $d$ の値に対して、2円に引ける共通接線の本数を求める。共通接線がない場合は0本と答える。

共通接線距離幾何学的考察
2025/7/31

半径 $r$ と $r'$ である2つの円の中心間の距離を $d$ とするとき、与えられた $r$, $r'$, $d$ の値に対して、2つの円に引ける共通接線の本数を求める問題です。

共通接線幾何学的考察
2025/7/31

直方体ABCD-EFGHにおいて、辺BCと平行な辺の数、垂直な辺の数、ねじれの位置にある辺の数を求める問題です。

空間図形直方体平行垂直ねじれの位置
2025/7/31

問題は、四面体と正六面体の頂点、辺、面の数を答えるものです。ただし、図には誤りがある箇所があります。

多面体四面体正六面体立方体頂点
2025/7/31

2つの円が点Pで接している。円周角 $\angle APB = \theta$, $\angle CPD = 45^\circ$, $\angle BPC = 55^\circ$ である。このとき、$...

円周角接線角度
2025/7/31

半径が $r$ と $r'$ である2つの円の中心間の距離が $d$ であるとき、2つの円に引ける共通接線の本数を求める問題です。共通接線がない場合は0本と答えます。

共通接線幾何
2025/7/31