7種類の果物(りんご、みかん、なし、かき、バナナ、マンゴー、メロン)がそれぞれ1個ずつ入ったかごから、3個の果物を取り出すとき、取り出し方は何通りあるかを求める問題です。

確率論・統計学組み合わせ場合の数順列と組み合わせ
2025/5/10

1. 問題の内容

7種類の果物(りんご、みかん、なし、かき、バナナ、マンゴー、メロン)がそれぞれ1個ずつ入ったかごから、3個の果物を取り出すとき、取り出し方は何通りあるかを求める問題です。

2. 解き方の手順

この問題は組み合わせの問題です。7種類の中から3種類を選ぶ組み合わせの数を計算します。
組み合わせの公式は以下の通りです。
nCr=n!r!(nr)!_{n}C_{r} = \frac{n!}{r!(n-r)!}
ここで、nn は全体の数(この場合は7)、rr は選ぶ数(この場合は3)です。
したがって、求める組み合わせの数は、
7C3=7!3!(73)!=7!3!4!=7×6×5×4×3×2×1(3×2×1)(4×3×2×1)=7×6×53×2×1=7×5=35_{7}C_{3} = \frac{7!}{3!(7-3)!} = \frac{7!}{3!4!} = \frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(4 \times 3 \times 2 \times 1)} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 7 \times 5 = 35

3. 最終的な答え

35通り

「確率論・統計学」の関連問題

A, Bの2人がじゃんけんをして、どちらかが3回先に勝ったところで止めるゲームを考える。引き分けはないものとすると、勝負の分かれ方は何通りあるかを求める問題です。

確率組み合わせ場合の数
2025/5/10

男子6人と女子4人が円形に並ぶとき、女子4人が隣り合う並び方は何通りあるか求めます。

順列組み合わせ円順列
2025/5/10

大小2つのサイコロを振ったとき、出た目の和が3の倍数になる場合の数を求める。

確率サイコロ場合の数確率分布
2025/5/10

大小2つのサイコロを振ったとき、出た目の差が奇数になる場合の数を求める問題です。

確率サイコロ場合の数期待値
2025/5/10

大小2つのサイコロを振ったとき、出た目の和が10以上になる場合の数を求める問題です。

確率サイコロ場合の数
2025/5/10

大小2つのサイコロを振ったとき、出た目の和が6または8になる場合の数を求める。

確率サイコロ場合の数組み合わせ
2025/5/10

大小2つのサイコロを振ったとき、出た目の差が3以上になる場合の数を求める問題です。

確率サイコロ組み合わせ
2025/5/10

大小2つのサイコロを同時に投げたとき、出る目の数の積が6になる場合の数を求める。

確率サイコロ場合の数組み合わせ
2025/5/10

大小2つのサイコロを同時に投げたとき、出る目の数の差が3になる場合の数を求めます。

確率場合の数サイコロ
2025/5/10

大小2つのサイコロを同時に投げたとき、出る目の数の和が6になる場合の数を求める問題です。

確率サイコロ場合の数組み合わせ
2025/5/10