与えられた式 $(x+y+1)(x+y-1)(x-y+1)(x-y-1)$ を展開して簡単にします。代数学式の展開因数分解多項式2025/5/101. 問題の内容与えられた式 (x+y+1)(x+y−1)(x−y+1)(x−y−1)(x+y+1)(x+y-1)(x-y+1)(x-y-1)(x+y+1)(x+y−1)(x−y+1)(x−y−1) を展開して簡単にします。2. 解き方の手順まず、最初の2つの括弧と、最後の2つの括弧をそれぞれ計算します。最初の2つの括弧を計算します:(x+y+1)(x+y−1)(x+y+1)(x+y-1)(x+y+1)(x+y−1)これは (A+1)(A−1)(A+1)(A-1)(A+1)(A−1) の形であり、A=x+yA = x+yA=x+y と置くと、A2−1A^2 - 1A2−1 となります。したがって、(x+y+1)(x+y−1)=(x+y)2−1=x2+2xy+y2−1(x+y+1)(x+y-1) = (x+y)^2 - 1 = x^2 + 2xy + y^2 - 1(x+y+1)(x+y−1)=(x+y)2−1=x2+2xy+y2−1次に、最後の2つの括弧を計算します:(x−y+1)(x−y−1)(x-y+1)(x-y-1)(x−y+1)(x−y−1)これは (B+1)(B−1)(B+1)(B-1)(B+1)(B−1) の形であり、B=x−yB = x-yB=x−y と置くと、B2−1B^2 - 1B2−1 となります。したがって、(x−y+1)(x−y−1)=(x−y)2−1=x2−2xy+y2−1(x-y+1)(x-y-1) = (x-y)^2 - 1 = x^2 - 2xy + y^2 - 1(x−y+1)(x−y−1)=(x−y)2−1=x2−2xy+y2−1次に、これらの結果を掛け合わせます。(x2+2xy+y2−1)(x2−2xy+y2−1)(x^2 + 2xy + y^2 - 1)(x^2 - 2xy + y^2 - 1)(x2+2xy+y2−1)(x2−2xy+y2−1)ここで、C=x2+y2−1C = x^2 + y^2 - 1C=x2+y2−1 と置くと、(C+2xy)(C−2xy)(C + 2xy)(C - 2xy)(C+2xy)(C−2xy) となり、C2−(2xy)2C^2 - (2xy)^2C2−(2xy)2 となります。したがって、(x2+2xy+y2−1)(x2−2xy+y2−1)=(x2+y2−1)2−(2xy)2(x^2 + 2xy + y^2 - 1)(x^2 - 2xy + y^2 - 1) = (x^2 + y^2 - 1)^2 - (2xy)^2(x2+2xy+y2−1)(x2−2xy+y2−1)=(x2+y2−1)2−(2xy)2=(x2+y2−1)(x2+y2−1)−4x2y2= (x^2 + y^2 - 1)(x^2 + y^2 - 1) - 4x^2y^2=(x2+y2−1)(x2+y2−1)−4x2y2=x4+x2y2−x2+x2y2+y4−y2−x2−y2+1−4x2y2= x^4 + x^2y^2 - x^2 + x^2y^2 + y^4 - y^2 - x^2 - y^2 + 1 - 4x^2y^2=x4+x2y2−x2+x2y2+y4−y2−x2−y2+1−4x2y2=x4+2x2y2−2x2+y4−2y2+1−4x2y2= x^4 + 2x^2y^2 - 2x^2 + y^4 - 2y^2 + 1 - 4x^2y^2=x4+2x2y2−2x2+y4−2y2+1−4x2y2=x4−2x2y2+y4−2x2−2y2+1= x^4 - 2x^2y^2 + y^4 - 2x^2 - 2y^2 + 1=x4−2x2y2+y4−2x2−2y2+1=(x2−y2)2−2(x2+y2)+1= (x^2 - y^2)^2 - 2(x^2 + y^2) + 1=(x2−y2)2−2(x2+y2)+13. 最終的な答えx4−2x2y2+y4−2x2−2y2+1x^4 - 2x^2y^2 + y^4 - 2x^2 - 2y^2 + 1x4−2x2y2+y4−2x2−2y2+1