分配法則と2乗の展開公式を用いて、$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ を証明する。

代数学展開公式分配法則多項式因数分解
2025/5/11

1. 問題の内容

分配法則と2乗の展開公式を用いて、(a+b)3=a3+3a2b+3ab2+b3(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 を証明する。

2. 解き方の手順

まず、(a+b)3(a+b)^3(a+b)2(a+b)(a+b)^2 (a+b) と変形する。
次に、(a+b)2(a+b)^2 を展開する。
そして、展開した結果に (a+b)(a+b) を分配法則を用いてかける。
最後に、同類項をまとめる。
(a+b)3=(a+b)2(a+b)(a+b)^3 = (a+b)^2(a+b)
(a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2
(a+b)3=(a2+2ab+b2)(a+b)(a+b)^3 = (a^2 + 2ab + b^2)(a+b)
分配法則を用いて展開すると、
(a2+2ab+b2)(a+b)=a2(a+b)+2ab(a+b)+b2(a+b)(a^2 + 2ab + b^2)(a+b) = a^2(a+b) + 2ab(a+b) + b^2(a+b)
=a3+a2b+2a2b+2ab2+ab2+b3= a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3
同類項をまとめると、
a3+a2b+2a2b+2ab2+ab2+b3=a3+3a2b+3ab2+b3a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3ab^2 + b^3
したがって、(a+b)3=a3+3a2b+3ab2+b3(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 が証明された。

3. 最終的な答え

(a+b)3=a3+3a2b+3ab2+b3(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3

「代数学」の関連問題

与えられた式 $(A+1)(2A-3)$ を展開して整理する問題です。

展開多項式因数分解式変形
2025/5/11

与えられた式 $(x - 2y)a + (2y - x)b$ を整理せよ。

式の整理因数分解共通因数
2025/5/11

与えられた方程式 $\frac{1}{b+2} = \frac{1}{10}$ と $\frac{3}{a+2} = \frac{1}{5}$ を解き、$a$ と $b$ の値を求めます。

方程式分数式一次方程式
2025/5/11

与えられた分数の分母を有理化する問題です。分数は $\frac{1}{1+\sqrt{6}-\sqrt{7}}$ です。

分母の有理化平方根分数
2025/5/11

(1) 1mあたり90円のリボンを$x$m買ったときの代金を$y$円とする。$x$と$y$の関係を式で表し、比例するか反比例するかを答える。 (2) 面積が30cm²の長方形の縦の長さを$x$cm、横...

比例反比例一次関数方程式
2025/5/11

関数 $y = f(x) = -2x^2 + (2a + 5)x - a$ の区間 $-4 \le x \le 1$ における最大値と最小値を、$a$ の値によって場合分けして求めます。

二次関数最大値最小値場合分け平方完成
2025/5/11

二次関数 $y = f(x) = -2x^2 + (2a + 5)x - a$ の区間 $-4 \le x \le 1$ における最大値と最小値を、$a$ の値によって場合分けして求め、表に書き込む問...

二次関数最大値最小値場合分け平方完成
2025/5/11

## 問題の内容

長方形面積関係式比例
2025/5/11

2次関数 $y = f(x) = 2x^2 - 2ax - 3$ の区間 $-5 \le x \le -1$ における最大値を $M(a)$、最小値を $m(a)$ とします。$b = M(a)$ と...

二次関数最大値最小値グラフ場合分け
2025/5/11

不等式 $2x-a > 1$ を満たす最小の整数が $x = -2$ であるとき、定数 $a$ の値の範囲を求める問題です。

不等式一次不等式整数解数直線
2025/5/11