We are asked to evaluate the definite integral $\int_0^1 x(1+x)^{2022} dx$.

AnalysisDefinite IntegralIntegration by SubstitutionPower Rule
2025/3/21

1. Problem Description

We are asked to evaluate the definite integral 01x(1+x)2022dx\int_0^1 x(1+x)^{2022} dx.

2. Solution Steps

Let u=1+xu = 1+x. Then x=u1x = u-1 and dx=dudx = du.
When x=0x = 0, u=1+0=1u = 1+0 = 1.
When x=1x = 1, u=1+1=2u = 1+1 = 2.
Thus, the integral becomes
12(u1)u2022du=12(u2023u2022)du\int_1^2 (u-1)u^{2022} du = \int_1^2 (u^{2023} - u^{2022}) du.
We integrate using the power rule:
xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C.
Thus,
12(u2023u2022)du=[u20242024u20232023]12=(220242024220232023)(120242024120232023)=22024202422023202312024+12023\int_1^2 (u^{2023} - u^{2022}) du = \left[\frac{u^{2024}}{2024} - \frac{u^{2023}}{2023}\right]_1^2 = \left(\frac{2^{2024}}{2024} - \frac{2^{2023}}{2023}\right) - \left(\frac{1^{2024}}{2024} - \frac{1^{2023}}{2023}\right) = \frac{2^{2024}}{2024} - \frac{2^{2023}}{2023} - \frac{1}{2024} + \frac{1}{2023}.
We can simplify this expression:
22024202422023202312024+12023=220232202422023202312024+12023=22023(2202412023)12024+12023=22023(1101212023)+(1202312024)=22023(2023101210122023)+2024202320232024=22023(101110122023)+120232024=22023101110122023+120232024\frac{2^{2024}}{2024} - \frac{2^{2023}}{2023} - \frac{1}{2024} + \frac{1}{2023} = \frac{2^{2023} \cdot 2}{2024} - \frac{2^{2023}}{2023} - \frac{1}{2024} + \frac{1}{2023} = 2^{2023} \left(\frac{2}{2024} - \frac{1}{2023}\right) - \frac{1}{2024} + \frac{1}{2023} = 2^{2023} \left(\frac{1}{1012} - \frac{1}{2023}\right) + \left(\frac{1}{2023} - \frac{1}{2024}\right) = 2^{2023} \left(\frac{2023 - 1012}{1012 \cdot 2023}\right) + \frac{2024 - 2023}{2023 \cdot 2024} = 2^{2023} \left(\frac{1011}{1012 \cdot 2023}\right) + \frac{1}{2023 \cdot 2024} = \frac{2^{2023} \cdot 1011}{1012 \cdot 2023} + \frac{1}{2023 \cdot 2024}.
Combining fractions, we have
2202310112024+1012101220232024=22023(10121)2024+1012101220232024=2202310122024220232024+1012101220232024=2202310122024+1012220232024101220232024=1012(220232024+1)220232024101220232024\frac{2^{2023} \cdot 1011 \cdot 2024 + 1012}{1012 \cdot 2023 \cdot 2024} = \frac{2^{2023} \cdot (1012 - 1) \cdot 2024 + 1012}{1012 \cdot 2023 \cdot 2024} = \frac{2^{2023} \cdot 1012 \cdot 2024 - 2^{2023} \cdot 2024 + 1012}{1012 \cdot 2023 \cdot 2024} = \frac{2^{2023} \cdot 1012 \cdot 2024 + 1012 - 2^{2023} \cdot 2024}{1012 \cdot 2023 \cdot 2024} = \frac{1012 (2^{2023} \cdot 2024 + 1) - 2^{2023} \cdot 2024}{1012 \cdot 2023 \cdot 2024}.
22024202422023202312024+12023=2023(220241)2024(220231)20232024=2023220242023202422023+202420232024=22023(202322024)+120232024=22023(40462024)+120232024=202222023+120232024\frac{2^{2024}}{2024} - \frac{2^{2023}}{2023} - \frac{1}{2024} + \frac{1}{2023} = \frac{2023(2^{2024}-1) - 2024(2^{2023}-1)}{2023 \cdot 2024} = \frac{2023 \cdot 2^{2024} - 2023 - 2024 \cdot 2^{2023} + 2024}{2023 \cdot 2024} = \frac{2^{2023}(2023 \cdot 2 - 2024) + 1}{2023 \cdot 2024} = \frac{2^{2023}(4046 - 2024) + 1}{2023 \cdot 2024} = \frac{2022 \cdot 2^{2023} + 1}{2023 \cdot 2024}.

3. Final Answer

202222023+120232024\frac{2022 \cdot 2^{2023} + 1}{2023 \cdot 2024}

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1