Let u=1+x. Then x=u−1 and dx=du. When x=0, u=1+0=1. When x=1, u=1+1=2. Thus, the integral becomes
∫12(u−1)u2022du=∫12(u2023−u2022)du. We integrate using the power rule:
∫xndx=n+1xn+1+C. Thus,
∫12(u2023−u2022)du=[2024u2024−2023u2023]12=(202422024−202322023)−(202412024−202312023)=202422024−202322023−20241+20231. We can simplify this expression:
202422024−202322023−20241+20231=202422023⋅2−202322023−20241+20231=22023(20242−20231)−20241+20231=22023(10121−20231)+(20231−20241)=22023(1012⋅20232023−1012)+2023⋅20242024−2023=22023(1012⋅20231011)+2023⋅20241=1012⋅202322023⋅1011+2023⋅20241. Combining fractions, we have
1012⋅2023⋅202422023⋅1011⋅2024+1012=1012⋅2023⋅202422023⋅(1012−1)⋅2024+1012=1012⋅2023⋅202422023⋅1012⋅2024−22023⋅2024+1012=1012⋅2023⋅202422023⋅1012⋅2024+1012−22023⋅2024=1012⋅2023⋅20241012(22023⋅2024+1)−22023⋅2024. 202422024−202322023−20241+20231=2023⋅20242023(22024−1)−2024(22023−1)=2023⋅20242023⋅22024−2023−2024⋅22023+2024=2023⋅202422023(2023⋅2−2024)+1=2023⋅202422023(4046−2024)+1=2023⋅20242022⋅22023+1.