次の式を計算する問題です。 $$\frac{\sqrt{2}-1}{\sqrt{2}+1} + \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} + \frac{\sqrt{3}+\sqrt{2}}{2-\sqrt{3}}$$代数学式の計算有理化根号2025/5/121. 問題の内容次の式を計算する問題です。2−12+1+3−23+2+3+22−3\frac{\sqrt{2}-1}{\sqrt{2}+1} + \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} + \frac{\sqrt{3}+\sqrt{2}}{2-\sqrt{3}}2+12−1+3+23−2+2−33+22. 解き方の手順各項を有理化して計算します。* 第1項: 2−12+1=(2−1)(2−1)(2+1)(2−1)=2−22+12−1=3−22 \frac{\sqrt{2}-1}{\sqrt{2}+1} = \frac{(\sqrt{2}-1)(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)} = \frac{2 - 2\sqrt{2} + 1}{2-1} = 3 - 2\sqrt{2} 2+12−1=(2+1)(2−1)(2−1)(2−1)=2−12−22+1=3−22* 第2項: 3−23+2=(3−2)(3−2)(3+2)(3−2)=3−26+23−2=5−26 \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} = \frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})} = \frac{3 - 2\sqrt{6} + 2}{3-2} = 5 - 2\sqrt{6} 3+23−2=(3+2)(3−2)(3−2)(3−2)=3−23−26+2=5−26* 第3項: 3+22−3=(3+2)(2+3)(2−3)(2+3)=23+3+22+64−3=3+23+22+6 \frac{\sqrt{3}+\sqrt{2}}{2-\sqrt{3}} = \frac{(\sqrt{3}+\sqrt{2})(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})} = \frac{2\sqrt{3} + 3 + 2\sqrt{2} + \sqrt{6}}{4-3} = 3 + 2\sqrt{3} + 2\sqrt{2} + \sqrt{6} 2−33+2=(2−3)(2+3)(3+2)(2+3)=4−323+3+22+6=3+23+22+6これらの項をすべて足し合わせます。(3−22)+(5−26)+(3+23+22+6)(3 - 2\sqrt{2}) + (5 - 2\sqrt{6}) + (3 + 2\sqrt{3} + 2\sqrt{2} + \sqrt{6}) (3−22)+(5−26)+(3+23+22+6)=3+5+3−22+22+23−26+6= 3 + 5 + 3 - 2\sqrt{2} + 2\sqrt{2} + 2\sqrt{3} - 2\sqrt{6} + \sqrt{6} =3+5+3−22+22+23−26+6=11+23−6= 11 + 2\sqrt{3} - \sqrt{6} =11+23−63. 最終的な答え11+23−6 11 + 2\sqrt{3} - \sqrt{6} 11+23−6