与えられた式 $x^3 - 3xy + y^3 + 1$ を因数分解することを試みます。

代数学因数分解多項式
2025/5/12

1. 問題の内容

与えられた式 x33xy+y3+1x^3 - 3xy + y^3 + 1 を因数分解することを試みます。

2. 解き方の手順

与えられた式は
x3+y3+133xy(1)x^3 + y^3 + 1^3 - 3xy(1)
と見ることができます。
これは、因数分解の公式
a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca)
を利用できる形になっています。
この公式に a=xa=x, b=yb=y, c=1c=1 を代入すると、
x3+y3+133xy(1)=(x+y+1)(x2+y2+12xyy(1)x(1))x^3 + y^3 + 1^3 - 3xy(1) = (x+y+1)(x^2 + y^2 + 1^2 - xy - y(1) - x(1))
=(x+y+1)(x2+y2+1xyyx)= (x+y+1)(x^2 + y^2 + 1 - xy - y - x)
となります。

3. 最終的な答え

(x+y+1)(x2+y2xyxy+1)(x+y+1)(x^2 + y^2 - xy - x - y + 1)

「代数学」の関連問題

与えられた連立不等式を解き、解の範囲を求める問題です。 連立不等式は次の通りです。 $\begin{cases} -x + 5 \ge 2x - 4 \\ 3(2x-1) + 1 > 4x + 3 \...

連立不等式不等式一次不等式解の範囲
2025/5/12

与えられた不等式を解き、$x$ の範囲を求める問題です。 不等式は $\frac{2}{3}(x+1) - \frac{5}{6} \ge x - \frac{3}{2}$ です。

不等式一次不等式計算
2025/5/12

与えられた3つの2次方程式を解きます。 (1) $x^2 = -64$ (2) $x^2 - 5x - 7 = 0$ (3) $x^2 - 6x + 10 = 0$

二次方程式解の公式複素数
2025/5/12

与えられた不等式 $|2x + 5| > 7$ を満たす $x$ の範囲を求める問題です。

絶対値不等式一次不等式
2025/5/12

(2) $0 \le x \le 2$ のとき、$\sqrt{x^2} + \sqrt{(x-2)^2}$ を簡単にしてください。 (3) $x = \frac{\sqrt{5}+1}{2}$, $y...

絶対値式の計算有理化平方根
2025/5/12

(1) 複素数 $a+bi$ と $a-bi$ の関係を答える問題です。 (2) 以下の複素数の計算をそれぞれ行う問題です。 ① $\frac{8+9i}{i}$ ② $\frac{3+i...

複素数複素数の計算共役複素数
2025/5/12

絶対値の不等式 $|3x - 2| < 5$ を解く問題です。

絶対値不等式一次不等式
2025/5/12

## 解答

不等式証明大小関係
2025/5/12

次の和を求める問題です。 (1) $\sum_{k=1}^{n} (2k + 5)$ (2) $\sum_{k=1}^{n} (k^2 + k)$

シグマ数列公式
2025/5/12

与えられた連立不等式を解きます。連立不等式は以下の通りです。 $\begin{cases} x - 5 < -2x + 4 \\ 3(1 - 2x) - 1 \le -4x - 3 \end{case...

不等式連立不等式一次不等式
2025/5/12