次の和を求める問題です。 (1) $\sum_{k=1}^{n} (2k + 5)$ (2) $\sum_{k=1}^{n} (k^2 + k)$代数学シグマ数列和公式2025/5/121. 問題の内容次の和を求める問題です。(1) ∑k=1n(2k+5)\sum_{k=1}^{n} (2k + 5)∑k=1n(2k+5)(2) ∑k=1n(k2+k)\sum_{k=1}^{n} (k^2 + k)∑k=1n(k2+k)2. 解き方の手順(1)∑k=1n(2k+5)\sum_{k=1}^{n} (2k + 5)∑k=1n(2k+5) を計算します。シグマ記号の性質より、∑k=1n(2k+5)=2∑k=1nk+∑k=1n5\sum_{k=1}^{n} (2k + 5) = 2\sum_{k=1}^{n} k + \sum_{k=1}^{n} 5∑k=1n(2k+5)=2∑k=1nk+∑k=1n5∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n5=5n\sum_{k=1}^{n} 5 = 5n∑k=1n5=5nしたがって、2∑k=1nk+∑k=1n5=2⋅n(n+1)2+5n=n(n+1)+5n=n2+n+5n=n2+6n=n(n+6)2\sum_{k=1}^{n} k + \sum_{k=1}^{n} 5 = 2 \cdot \frac{n(n+1)}{2} + 5n = n(n+1) + 5n = n^2 + n + 5n = n^2 + 6n = n(n+6)2∑k=1nk+∑k=1n5=2⋅2n(n+1)+5n=n(n+1)+5n=n2+n+5n=n2+6n=n(n+6)(2)∑k=1n(k2+k)\sum_{k=1}^{n} (k^2 + k)∑k=1n(k2+k) を計算します。シグマ記号の性質より、∑k=1n(k2+k)=∑k=1nk2+∑k=1nk\sum_{k=1}^{n} (k^2 + k) = \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k∑k=1n(k2+k)=∑k=1nk2+∑k=1nk∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)したがって、∑k=1nk2+∑k=1nk=n(n+1)(2n+1)6+n(n+1)2=n(n+1)(2n+1)+3n(n+1)6=n(n+1)(2n+1+3)6=n(n+1)(2n+4)6=2n(n+1)(n+2)6=n(n+1)(n+2)3\sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} = \frac{n(n+1)(2n+1) + 3n(n+1)}{6} = \frac{n(n+1)(2n+1+3)}{6} = \frac{n(n+1)(2n+4)}{6} = \frac{2n(n+1)(n+2)}{6} = \frac{n(n+1)(n+2)}{3}∑k=1nk2+∑k=1nk=6n(n+1)(2n+1)+2n(n+1)=6n(n+1)(2n+1)+3n(n+1)=6n(n+1)(2n+1+3)=6n(n+1)(2n+4)=62n(n+1)(n+2)=3n(n+1)(n+2)3. 最終的な答え(1) n(n+6)n(n+6)n(n+6)(2) n(n+1)(n+2)3\frac{n(n+1)(n+2)}{3}3n(n+1)(n+2)