次の問題の方程式と不等式を解く。 (1) $\frac{1}{x-1} = x+1$ (2) $\frac{1}{x-1} \leq x+1$代数学方程式不等式分数式解の公式2025/5/121. 問題の内容次の問題の方程式と不等式を解く。(1) 1x−1=x+1\frac{1}{x-1} = x+1x−11=x+1(2) 1x−1≤x+1\frac{1}{x-1} \leq x+1x−11≤x+12. 解き方の手順(1)1x−1=x+1\frac{1}{x-1} = x+1x−11=x+1両辺に x−1x-1x−1 をかけると、1=(x+1)(x−1)1 = (x+1)(x-1)1=(x+1)(x−1)1=x2−11 = x^2 - 11=x2−1x2=2x^2 = 2x2=2x=±2x = \pm \sqrt{2}x=±2x=±2x = \pm \sqrt{2}x=±2 は x≠1x \neq 1x=1 を満たすので、解となる。(2)1x−1≤x+1\frac{1}{x-1} \leq x+1x−11≤x+11x−1−(x+1)≤0\frac{1}{x-1} - (x+1) \leq 0x−11−(x+1)≤01−(x+1)(x−1)x−1≤0\frac{1-(x+1)(x-1)}{x-1} \leq 0x−11−(x+1)(x−1)≤01−(x2−1)x−1≤0\frac{1-(x^2-1)}{x-1} \leq 0x−11−(x2−1)≤02−x2x−1≤0\frac{2-x^2}{x-1} \leq 0x−12−x2≤0x2−2x−1≥0\frac{x^2-2}{x-1} \geq 0x−1x2−2≥0(x−2)(x+2)x−1≥0\frac{(x-\sqrt{2})(x+\sqrt{2})}{x-1} \geq 0x−1(x−2)(x+2)≥0数直線を書いて考える。x<−2,1<x≤2x < -\sqrt{2}, 1 < x \leq \sqrt{2}x<−2,1<x≤23. 最終的な答え(1) x=±2x = \pm \sqrt{2}x=±2(2) x≤−2,1<x≤2x \leq -\sqrt{2}, 1 < x \leq \sqrt{2}x≤−2,1<x≤2