$x = \frac{1}{1 + \sqrt{2} + \sqrt{3}}$ 、 $y = \frac{1}{1 + \sqrt{2} - \sqrt{3}}$ のとき、 $\frac{1}{x+y}$ の値を求めよ。代数学式の計算有理化根号2025/5/121. 問題の内容x=11+2+3x = \frac{1}{1 + \sqrt{2} + \sqrt{3}}x=1+2+31 、 y=11+2−3y = \frac{1}{1 + \sqrt{2} - \sqrt{3}}y=1+2−31 のとき、 1x+y\frac{1}{x+y}x+y1 の値を求めよ。2. 解き方の手順まず、x+yx + yx+yを計算します。x+y=11+2+3+11+2−3x + y = \frac{1}{1 + \sqrt{2} + \sqrt{3}} + \frac{1}{1 + \sqrt{2} - \sqrt{3}}x+y=1+2+31+1+2−31通分して計算します。x+y=(1+2−3)+(1+2+3)(1+2+3)(1+2−3)x + y = \frac{(1 + \sqrt{2} - \sqrt{3}) + (1 + \sqrt{2} + \sqrt{3})}{(1 + \sqrt{2} + \sqrt{3})(1 + \sqrt{2} - \sqrt{3})}x+y=(1+2+3)(1+2−3)(1+2−3)+(1+2+3)x+y=2+22(1+2)2−(3)2x + y = \frac{2 + 2\sqrt{2}}{(1 + \sqrt{2})^2 - (\sqrt{3})^2}x+y=(1+2)2−(3)22+22x+y=2+221+22+2−3x + y = \frac{2 + 2\sqrt{2}}{1 + 2\sqrt{2} + 2 - 3}x+y=1+22+2−32+22x+y=2+2222x + y = \frac{2 + 2\sqrt{2}}{2\sqrt{2}}x+y=222+22x+y=2(1+2)22x + y = \frac{2(1 + \sqrt{2})}{2\sqrt{2}}x+y=222(1+2)x+y=1+22x + y = \frac{1 + \sqrt{2}}{\sqrt{2}}x+y=21+2x+y=2+22x + y = \frac{\sqrt{2} + 2}{2}x+y=22+2次に、1x+y\frac{1}{x+y}x+y1を計算します。1x+y=11+22\frac{1}{x + y} = \frac{1}{\frac{1 + \sqrt{2}}{\sqrt{2}}}x+y1=21+211x+y=21+2\frac{1}{x + y} = \frac{\sqrt{2}}{1 + \sqrt{2}}x+y1=1+22分母を有理化します。1x+y=2(1−2)(1+2)(1−2)\frac{1}{x + y} = \frac{\sqrt{2}(1 - \sqrt{2})}{(1 + \sqrt{2})(1 - \sqrt{2})}x+y1=(1+2)(1−2)2(1−2)1x+y=2−21−2\frac{1}{x + y} = \frac{\sqrt{2} - 2}{1 - 2}x+y1=1−22−21x+y=2−2−1\frac{1}{x + y} = \frac{\sqrt{2} - 2}{-1}x+y1=−12−21x+y=2−2\frac{1}{x + y} = 2 - \sqrt{2}x+y1=2−23. 最終的な答え2−22 - \sqrt{2}2−2