与えられた式 $\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}} - \frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ を計算します。代数学式の計算有理化平方根2025/5/121. 問題の内容与えられた式 23−2−23+2\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}} - \frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}3−22−3+22 を計算します。2. 解き方の手順まず、それぞれの分数を有理化します。23−2=2(3+2)(3−2)(3+2)=6+23−2=6+2\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}} = \frac{\sqrt{2}(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})} = \frac{\sqrt{6}+2}{3-2} = \sqrt{6}+23−22=(3−2)(3+2)2(3+2)=3−26+2=6+223+2=2(3−2)(3+2)(3−2)=6−23−2=6−2\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}} = \frac{\sqrt{2}(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})} = \frac{\sqrt{6}-2}{3-2} = \sqrt{6}-23+22=(3+2)(3−2)2(3−2)=3−26−2=6−2次に、これらの結果を元の式に代入して計算します。23−2−23+2=(6+2)−(6−2)=6+2−6+2=4\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}} - \frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}} = (\sqrt{6}+2) - (\sqrt{6}-2) = \sqrt{6}+2-\sqrt{6}+2 = 43−22−3+22=(6+2)−(6−2)=6+2−6+2=43. 最終的な答え4