連立不等式 $\begin{cases} 7x - 5 > 13 - 2x \\ x + a \geq 3x + 5 \end{cases}$ を満たす整数 $x$ がちょうど5個存在するとき、定数 $a$ の値の範囲を求めよ。

代数学不等式連立不等式整数解範囲
2025/5/12

1. 問題の内容

連立不等式
$\begin{cases}
7x - 5 > 13 - 2x \\
x + a \geq 3x + 5
\end{cases}$
を満たす整数 xx がちょうど5個存在するとき、定数 aa の値の範囲を求めよ。

2. 解き方の手順

まず、それぞれの不等式を解きます。
1つ目の不等式:
7x5>132x7x - 5 > 13 - 2x
9x>189x > 18
x>2x > 2
2つ目の不等式:
x+a3x+5x + a \geq 3x + 5
2x5a-2x \geq 5 - a
2xa52x \leq a - 5
xa52x \leq \frac{a - 5}{2}
したがって、連立不等式の解は
2<xa522 < x \leq \frac{a - 5}{2}
を満たす xx です。
この範囲に含まれる整数 xx がちょうど5個であるとき、
x=3,4,5,6,7x = 3, 4, 5, 6, 7
となる必要があります。
よって、
7a52<87 \leq \frac{a - 5}{2} < 8
でなければなりません。
各辺に2をかけて
14a5<1614 \leq a - 5 < 16
各辺に5を足して
19a<2119 \leq a < 21

3. 最終的な答え

19a<2119 \leq a < 21

「代数学」の関連問題

問題は4つあります。 (1) $(4-3i)x + (2+5i)y = 6-11i$ を満たす実数 $x$, $y$ を求める。 (2) 次の複素数の計算をする。 (i) $(3-i) + (...

複素数連立方程式整式の割り算二次方程式
2025/5/12

与えられた画像に含まれる複数の数学の問題を解きます。具体的には、以下の5つの問題です。 (2) 次の式を計算せよ。 1. $(3-i) + (1+i)$ 2. $(3-2i)^2$ ...

複素数二次方程式因数分解剰余の定理解の公式
2025/5/12

(1) 初項が45、2項目が15、3項目が5である等比数列$\{a_n\}$の一般項を求めよ。 (2) 第3項が18、第5項が162であり、公比が負である等比数列$\{a_n\}$の一般項を求めよ。

等比数列数列一般項公比
2025/5/12

以下の問題に解答します。 (1) $(3x+2)^5$ の展開式における $x^3$ の項の係数を求めます。 (2) $\frac{x^2+x-6}{x^2-4x+4} \times \frac{x^...

展開因数分解恒等式複素数剰余の定理
2025/5/12

(1) $x - \frac{1}{x} = 2\sqrt{2}$ かつ $x < 0$ のとき、$x^2 + \frac{1}{x^2}$、 $x + \frac{1}{x}$、 $(x-\frac...

式の計算二次方程式対称式
2025/5/12

与えられた式 $\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}} - \frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ を計算します。

式の計算有理化平方根
2025/5/12

次の1次不等式を解きます。 $5(1-x) \le 2(2-x)$

一次不等式不等式計算
2025/5/12

与えられた多項式 $x^2 + 4xy + 3y^2 - x + y - 2$ を因数分解します。

因数分解多項式
2025/5/12

次の不等式を解きます。 $\frac{7}{8}x + \frac{1}{3} \leq x + \frac{3}{4}$

不等式一次不等式計算
2025/5/12

不等式 $0.9 - 0.3x \geq 0.1x - 1.1$ を解く問題です。

不等式一次不等式解法
2025/5/12