与えられた式 $a^2(b-c) + b^2(c-a) + c^2(a-b)$ を因数分解する。

代数学因数分解多項式式の展開式の整理
2025/5/12

1. 問題の内容

与えられた式 a2(bc)+b2(ca)+c2(ab)a^2(b-c) + b^2(c-a) + c^2(a-b) を因数分解する。

2. 解き方の手順

与えられた式を展開し、整理した後、因数分解を行います。
ステップ1: 式を展開する
a2(bc)+b2(ca)+c2(ab)=a2ba2c+b2cb2a+c2ac2ba^2(b-c) + b^2(c-a) + c^2(a-b) = a^2b - a^2c + b^2c - b^2a + c^2a - c^2b
ステップ2: 式を整理する
まず、aaについて整理します。
a2(bc)+a(c2b2)+(b2cc2b)a^2(b-c) + a(c^2-b^2) + (b^2c - c^2b)
ステップ3: aaについての式を因数分解する
a2(bc)+a(cb)(c+b)+bc(bc)a^2(b-c) + a(c-b)(c+b) + bc(b-c)
=a2(bc)a(bc)(b+c)+bc(bc)= a^2(b-c) - a(b-c)(b+c) + bc(b-c)
共通因数(bc)(b-c)でくくり出す
=(bc)(a2a(b+c)+bc)= (b-c)(a^2 - a(b+c) + bc)
=(bc)(a2abac+bc)= (b-c)(a^2 - ab - ac + bc)
=(bc)[a(ab)c(ab)]= (b-c)[a(a-b) - c(a-b)]
=(bc)(ab)(ac)= (b-c)(a-b)(a-c)
=(ab)(bc)(ca)= -(a-b)(b-c)(c-a)

3. 最終的な答え

与えられた式を因数分解した結果は、(ab)(bc)(ca)-(a-b)(b-c)(c-a)です。
最終的な答え:
(ab)(bc)(ca)-(a-b)(b-c)(c-a)

「代数学」の関連問題

与えられた等式・不等式を証明し、不等式の場合は等号が成り立つ条件を求める。 (1) $a+b+c=0$ のとき、$a^2 - 2bc = b^2 + c^2$ を証明する。 (2) $x^2 + 2x...

不等式等式証明相加相乗平均
2025/5/12

問題6は、2次方程式 $x^2 - mx + m^2 - 3m - 9 = 0$ が異なる2つの虚数解を持つとき、定数 $m$ の値の範囲を求める問題です。 問題7は、3次方程式 $x^3 + 7x^...

二次方程式三次方程式判別式因数分解解の公式
2025/5/12

多項式 $P(x)$ を $x-1$ で割った余りが3、$x+3$ で割った余りが-5であるとき、$P(x)$ を $(x-1)(x+3)$ で割った余りを求める問題です。

多項式剰余の定理因数定理連立方程式
2025/5/12

## 問題3の(2)と(3)を解きます

不等式相加相乗平均等号成立条件証明
2025/5/12

与えられた方程式 $x^4 - 16 = 0$ を解く。

方程式因数分解複素数四次方程式
2025/5/12

等比数列をなす3つの実数の和が15、積が-1000であるとき、この3つの実数を求める。

等比数列方程式数列
2025/5/12

初項が7、公比が3の等比数列について、初項から第n項までの和 $S_n$ を求め、さらに $S_n = 280$ となる $n$ の値を求める問題です。

等比数列数列の和指数
2025/5/12

$a+b+c=0$ のとき、等式 $ab(a+b)+bc(b+c)+ca(c+a)+3abc=0$ を証明せよ。

等式の証明式の変形比例式
2025/5/12

問題は4つあります。 (1) $(4-3i)x + (2+5i)y = 6-11i$ を満たす実数 $x$, $y$ を求める。 (2) 次の複素数の計算をする。 (i) $(3-i) + (...

複素数連立方程式整式の割り算二次方程式
2025/5/12

与えられた画像に含まれる複数の数学の問題を解きます。具体的には、以下の5つの問題です。 (2) 次の式を計算せよ。 1. $(3-i) + (1+i)$ 2. $(3-2i)^2$ ...

複素数二次方程式因数分解剰余の定理解の公式
2025/5/12