$x = -\frac{3}{4}$ , $y = \frac{2}{3}$のとき、$(8x - 3y)^2 - (8x + 3y)^2$ の値を求めよ。代数学式の展開代入計算2025/5/121. 問題の内容x=−34x = -\frac{3}{4}x=−43 , y=23y = \frac{2}{3}y=32のとき、(8x−3y)2−(8x+3y)2(8x - 3y)^2 - (8x + 3y)^2(8x−3y)2−(8x+3y)2 の値を求めよ。2. 解き方の手順与えられた式 (8x−3y)2−(8x+3y)2(8x - 3y)^2 - (8x + 3y)^2(8x−3y)2−(8x+3y)2 を展開し、簡単にする。(A−B)2=A2−2AB+B2(A - B)^2 = A^2 - 2AB + B^2(A−B)2=A2−2AB+B2 および (A+B)2=A2+2AB+B2(A + B)^2 = A^2 + 2AB + B^2(A+B)2=A2+2AB+B2 を使う。(8x−3y)2−(8x+3y)2=(64x2−48xy+9y2)−(64x2+48xy+9y2)(8x - 3y)^2 - (8x + 3y)^2 = (64x^2 - 48xy + 9y^2) - (64x^2 + 48xy + 9y^2)(8x−3y)2−(8x+3y)2=(64x2−48xy+9y2)−(64x2+48xy+9y2)=64x2−48xy+9y2−64x2−48xy−9y2= 64x^2 - 48xy + 9y^2 - 64x^2 - 48xy - 9y^2=64x2−48xy+9y2−64x2−48xy−9y2=−96xy= -96xy=−96xy次に、x=−34x = -\frac{3}{4}x=−43 , y=23y = \frac{2}{3}y=32 を代入する。−96xy=−96×(−34)×(23)-96xy = -96 \times (-\frac{3}{4}) \times (\frac{2}{3})−96xy=−96×(−43)×(32)=−96×(−612)= -96 \times (-\frac{6}{12})=−96×(−126)=−96×(−12)= -96 \times (-\frac{1}{2})=−96×(−21)=48= 48=483. 最終的な答え48