与えられた3つの関数について、それぞれの2次導関数を求める問題です。 (1) $y = 3x^3 - 3x^2 + 4x - 1$ (2) $y = \frac{x^2}{x - 3}$ (3) $y = x^3 \log x$

解析学微分導関数2次導関数関数の微分商の微分積の微分
2025/3/21

1. 問題の内容

与えられた3つの関数について、それぞれの2次導関数を求める問題です。
(1) y=3x33x2+4x1y = 3x^3 - 3x^2 + 4x - 1
(2) y=x2x3y = \frac{x^2}{x - 3}
(3) y=x3logxy = x^3 \log x

2. 解き方の手順

(1) y=3x33x2+4x1y = 3x^3 - 3x^2 + 4x - 1
まず、1次導関数を求めます。
y=9x26x+4y' = 9x^2 - 6x + 4
次に、2次導関数を求めます。
y=18x6y'' = 18x - 6
したがって、y'' = 18x + (-6)となります。
(2) y=x2x3y = \frac{x^2}{x - 3}
まず、1次導関数を求めます。商の微分法を使用します。
y=2x(x3)x2(1)(x3)2=2x26xx2(x3)2=x26x(x3)2y' = \frac{2x(x-3) - x^2(1)}{(x-3)^2} = \frac{2x^2 - 6x - x^2}{(x-3)^2} = \frac{x^2 - 6x}{(x-3)^2}
次に、2次導関数を求めます。再び商の微分法を使用します。
y=(2x6)(x3)2(x26x)(2(x3))(x3)4=(2x6)(x3)2(x26x)(x3)3=2x212x+182x2+12x(x3)3=18(x3)3y'' = \frac{(2x - 6)(x-3)^2 - (x^2 - 6x)(2(x-3))}{(x-3)^4} = \frac{(2x - 6)(x-3) - 2(x^2 - 6x)}{(x-3)^3} = \frac{2x^2 - 12x + 18 - 2x^2 + 12x}{(x-3)^3} = \frac{18}{(x-3)^3}
したがって、y'' = 18 / (x-3)^3となります。
(3) y=x3logxy = x^3 \log x
まず、1次導関数を求めます。積の微分法を使用します。
y=3x2logx+x31x=3x2logx+x2y' = 3x^2 \log x + x^3 \cdot \frac{1}{x} = 3x^2 \log x + x^2
次に、2次導関数を求めます。再び積の微分法を使用します。
y=6xlogx+3x21x+2x=6xlogx+3x+2x=6xlogx+5xy'' = 6x \log x + 3x^2 \cdot \frac{1}{x} + 2x = 6x \log x + 3x + 2x = 6x \log x + 5x
したがって、y'' = 6x log x + 5xとなります。

3. 最終的な答え

(1) y=18x6y'' = 18x - 6
(2) y=18(x3)3y'' = \frac{18}{(x-3)^3}
(3) y=6xlogx+5xy'' = 6x \log x + 5x

「解析学」の関連問題

関数 $y = f(x) = (1 + \log(2x))^3$ の導関数 $y'$ を求める問題です。

微分導関数合成関数の微分対数関数
2025/4/11

与えられた関数 $y = f(x) = (x^2 + 2) \cdot 3^x$ の導関数を求める問題です。

導関数積の微分指数関数微分
2025/4/11

与えられた関数 $y = f(x) = \log{3x}$ を扱います。特に指示がないので、この関数について何をするかは不明です。一般的な場合として、この関数の性質について考察します。例えば、定義域を...

対数関数定義域不等式
2025/4/11

与えられた関数 $y = f(x) = \sin^3 x$ の導関数 $\frac{dy}{dx}$ を求める問題です。

導関数三角関数合成関数の微分
2025/4/11

与えられた関数 $y = f(x) = \sin(x^3)$ の導関数を求める問題です。

導関数微分合成関数チェインルール三角関数
2025/4/11

関数 $y = f(x) = \sin 3x$ が与えられています。この関数について、具体的に何を求めるべきか指示がありません。ここでは、関数の周期を求めることにします。

三角関数周期正弦関数
2025/4/11

関数 $y = f(x) = e^{50x}$ の導関数を求める問題です。

微分指数関数導関数指数関数の微分
2025/4/11

与えられた関数 $y = f(x) = \frac{1}{(x^2 + 2)^6}$ の導関数を求めよ。

導関数微分合成関数の微分チェーンルール
2025/4/11

与えられた関数 $y = f(x) = (x^2 + 3)^{50}$ の導関数 $y'$ または $f'(x)$ を求める問題です。

微分導関数連鎖律合成関数
2025/4/11

次の数列 $\{a_n\}$ の極限を求めよ。 (1) $a_n = (1 + \frac{4}{n})^n$ (2) $a_n = \frac{3n + 1}{2n}$ (3) $a_n = \fr...

数列極限指数関数対数関数
2025/4/11