定積分 $\int_{1}^{2} (-5) dx$ を計算します。

解析学定積分積分積分計算
2025/7/23

1. 問題の内容

定積分 12(5)dx\int_{1}^{2} (-5) dx を計算します。

2. 解き方の手順

定数関数の積分は、xx を掛けるだけです。積分範囲を考慮して計算します。
まず、5-5 の不定積分を求めます。
5dx=5x+C\int -5 dx = -5x + CCCは積分定数)
次に、定積分の定義に従い、積分範囲の端点を代入して差を計算します。
12(5)dx=[5x]12=(5×2)(5×1)\int_{1}^{2} (-5) dx = [-5x]_{1}^{2} = (-5 \times 2) - (-5 \times 1)
=10(5)= -10 - (-5)
=10+5= -10 + 5
=5= -5

3. 最終的な答え

-5

「解析学」の関連問題

以下の4つの関数について、不定積分を求める問題です。 (1) $xe^x$ (2) $x\sin x$ (3) $\tan^{-1} x$ (4) $\log(x^2+1)$

不定積分部分積分積分
2025/7/23

与えられた2つの1階線形常微分方程式を解きます。 (1) $\frac{dy}{dx} + y = \cos x$ (2) $\frac{dy}{dx} + y \cos x = \sin 2x$

常微分方程式線形微分方程式積分因子部分積分
2025/7/23

区間 $[a, b]$ を $n$ 等分し、関数 $f(x) = x$ のリーマン和を計算する。各小区間の代表点として左端、中点、右端を選んだ場合のリーマン和をそれぞれ $L_n, M_n, R_n$...

リーマン和積分極限
2025/7/23

与えられた3つの関数について、不定積分を求めます。 (1) $\log x$ (2) $x \cos x$ (3) $\sin^{-1} x$

積分不定積分部分積分置換積分対数関数三角関数逆三角関数
2025/7/23

以下の6つの数列の極限を求める問題です。極限が存在する場合は、その値を求めます。 (1) $\lim_{n\to\infty} (-2)^n$ (2) $\lim_{n\to\infty} \frac...

数列の極限極限発散挟み撃ちの原理
2025/7/23

区間 $I$ 上の関数 $f$ が狭義単調増加であることの定義を述べる。 $I$ 上の関数 $f$ と $g$ が狭義単調増加かつ正値であるとき、積 $fg$ が狭義単調増加であることを証明する。 $...

単調増加関数の性質不等式証明
2025/7/23

$\int \frac{1}{x^2 - 1} dx$ を求める問題です。

積分部分分数分解置換積分部分積分三角関数
2025/7/23

関数 $f$ が閉区間 $[a, b]$ で連続であり、開区間 $(a, b)$ で微分可能である。また、開区間 $(a, b)$ で $f'(x) > 0$ とする。このとき、$f(b) > f(a...

微積分平均値の定理関数の連続性関数の微分可能性
2025/7/23

関数 $x(2x+1)^8$ の不定積分を求めます。

不定積分置換積分積分
2025/7/23

与えられた関数の不定積分を計算します。 (1) $x(2x+1)^8$ (2) $\sin(3x+1)$ (3) $\frac{(\log x)^2}{x}$ (4) $\frac{e^x}{1+e^...

不定積分置換積分部分積分積分計算
2025/7/23