実数 $a, b$ が変化するとき、定積分 $\int_{0}^{\pi} (x - a - b\cos x)^2 dx$ の最小値を求め、そのときの $a, b$ の値を求める。
2025/7/23
1. 問題の内容
実数 が変化するとき、定積分 の最小値を求め、そのときの の値を求める。
2. 解き方の手順
定積分を とおくと、
が最小となる を求めるために、偏微分を利用する。
が最小となるのは、 かつ のときである。
よって、
(1)
(2)
(1)より、
(2)より、
したがって、
したがって、、 のとき、 は最小となる。
このとき、
3. 最終的な答え
最小値:
,