問題は $a^2 - \frac{b}{3} = \frac{4}{3}$ を解くことです。ただし、変数が一つしかないので、$a$か$b$どちらかを別の変数で表す問題だと考えられます。ここでは、$a$ について解き、$b$ の式で表すことにします。

代数学方程式変数平方根解の公式
2025/5/13

1. 問題の内容

問題は a2b3=43a^2 - \frac{b}{3} = \frac{4}{3} を解くことです。ただし、変数が一つしかないので、aabbどちらかを別の変数で表す問題だと考えられます。ここでは、aa について解き、bb の式で表すことにします。

2. 解き方の手順

まず、与えられた方程式を整理します。
a2b3=43a^2 - \frac{b}{3} = \frac{4}{3}
a2a^2 について解くために、両辺に b3\frac{b}{3} を加えます。
a2=43+b3a^2 = \frac{4}{3} + \frac{b}{3}
右辺を通分します。
a2=4+b3a^2 = \frac{4+b}{3}
次に、aa を求めるために、両辺の平方根を取ります。
a=±4+b3a = \pm\sqrt{\frac{4+b}{3}}

3. 最終的な答え

a=±4+b3a = \pm\sqrt{\frac{4+b}{3}}

「代数学」の関連問題

与えられた整式の組について、最大公約数と最小公倍数をそれぞれ求める問題です。

最大公約数最小公倍数整式因数分解
2025/5/13

$x = \frac{\sqrt{5}+2}{\sqrt{5}-2}$、$y = \frac{\sqrt{5}-2}{\sqrt{5}+2}$のとき、以下の式の値を求めます。 (1) $x+y$ (2...

式の計算有理化代数式の展開平方根
2025/5/13

与えられた対数方程式 $2\log_3(3x-2) + \log_{\frac{1}{3}}(\frac{2}{3}x-\frac{1}{9}) = 2$ を解く。

対数対数方程式二次方程式真数条件
2025/5/13

与えられた2つの式を計算します。 (1) $2x^3 \times (-x^2)$ (2) $(-3x^2)^4$

多項式指数法則計算
2025/5/13

与えられた線形方程式系を解き、解を「定ベクトル + (何本かのベクトルの、係数が任意な線形和)」の形式で表します。例に示されているように、拡大係数行列の簡約化の結果を明記する必要があります。

線形代数線形方程式系連立方程式拡大係数行列簡約化ベクトル
2025/5/13

与えられた不等式を証明し、等号が成り立つ場合を調べます。 (1) $x^2 + y^2 \ge 2(x+y-1)$ (2) $x^2 + 2xy + 2y^2 \ge 0$ (3) $\frac{a^...

不等式証明平方完成相加相乗平均
2025/5/13

連続する5つの整数の和が5の倍数になることを説明する。

整数の性質証明因数分解代数
2025/5/13

整式Aを整式Bで割ったときの商と余りを求め、等式で表す問題です。 (1) $A = 2x^4 - x^3 + x^2 + 14x - 4$, $B = 2x^2 + 3x - 1$ (2) $A = ...

多項式の割り算整式余り
2025/5/13

与えられた数列の第 $k$ 項を $k$ の式で表し、初項から第 $n$ 項までの和 $S_n$ を求める。具体的には、以下の3つの数列について考える。 (1) $2, 2+4, 2+4+6, 2+4...

数列級数等差数列等比数列Σ記号和の公式
2025/5/13

与えられた2次関数 $y = x^2 - 2kx + 2k + 3$ のグラフをCとする。 (a) Cとx軸が異なる2点で交わるようなkの値の範囲を求める。 (b) Cがx軸の$-2 < x < 4$...

二次関数判別式二次不等式グラフ
2025/5/13