与えられた二重和を計算します。 $ \sum_{m=1}^{n} \left( \sum_{k=1}^{m} k \right) $代数学級数シグマ二重和計算2025/5/131. 問題の内容与えられた二重和を計算します。∑m=1n(∑k=1mk) \sum_{m=1}^{n} \left( \sum_{k=1}^{m} k \right) ∑m=1n(∑k=1mk)2. 解き方の手順まず、内側の和を計算します。∑k=1mk=m(m+1)2 \sum_{k=1}^{m} k = \frac{m(m+1)}{2} ∑k=1mk=2m(m+1)次に、外側の和を計算します。∑m=1nm(m+1)2=12∑m=1n(m2+m) \sum_{m=1}^{n} \frac{m(m+1)}{2} = \frac{1}{2} \sum_{m=1}^{n} (m^2 + m) ∑m=1n2m(m+1)=21∑m=1n(m2+m)=12(∑m=1nm2+∑m=1nm) = \frac{1}{2} \left( \sum_{m=1}^{n} m^2 + \sum_{m=1}^{n} m \right) =21(∑m=1nm2+∑m=1nm)=12(n(n+1)(2n+1)6+n(n+1)2) = \frac{1}{2} \left( \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right) =21(6n(n+1)(2n+1)+2n(n+1))=12(n(n+1)(2n+1)+3n(n+1)6) = \frac{1}{2} \left( \frac{n(n+1)(2n+1) + 3n(n+1)}{6} \right) =21(6n(n+1)(2n+1)+3n(n+1))=112n(n+1)(2n+1+3) = \frac{1}{12} n(n+1) (2n+1+3) =121n(n+1)(2n+1+3)=112n(n+1)(2n+4) = \frac{1}{12} n(n+1) (2n+4) =121n(n+1)(2n+4)=112n(n+1)⋅2(n+2) = \frac{1}{12} n(n+1) \cdot 2(n+2) =121n(n+1)⋅2(n+2)=n(n+1)(n+2)6 = \frac{n(n+1)(n+2)}{6} =6n(n+1)(n+2)3. 最終的な答えn(n+1)(n+2)6\frac{n(n+1)(n+2)}{6}6n(n+1)(n+2)