$(x-1)^6$を展開せよ。代数学展開二項定理多項式2025/5/131. 問題の内容(x−1)6(x-1)^6(x−1)6を展開せよ。2. 解き方の手順二項定理を用いて展開します。二項定理は以下のように表されます。(a+b)n=∑k=0n(nk)an−kbk(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k(a+b)n=∑k=0n(kn)an−kbkここで、n=6n=6n=6, a=xa=xa=x, b=−1b=-1b=−1とします。(nk)\binom{n}{k}(kn)は二項係数と呼ばれ、n!k!(n−k)!\frac{n!}{k!(n-k)!}k!(n−k)!n!で計算できます。(x−1)6=∑k=06(6k)x6−k(−1)k(x-1)^6 = \sum_{k=0}^{6} \binom{6}{k} x^{6-k} (-1)^k(x−1)6=∑k=06(k6)x6−k(−1)k(x−1)6=(60)x6(−1)0+(61)x5(−1)1+(62)x4(−1)2+(63)x3(−1)3+(64)x2(−1)4+(65)x1(−1)5+(66)x0(−1)6(x-1)^6 = \binom{6}{0}x^6(-1)^0 + \binom{6}{1}x^5(-1)^1 + \binom{6}{2}x^4(-1)^2 + \binom{6}{3}x^3(-1)^3 + \binom{6}{4}x^2(-1)^4 + \binom{6}{5}x^1(-1)^5 + \binom{6}{6}x^0(-1)^6(x−1)6=(06)x6(−1)0+(16)x5(−1)1+(26)x4(−1)2+(36)x3(−1)3+(46)x2(−1)4+(56)x1(−1)5+(66)x0(−1)6各二項係数を計算します。(60)=1\binom{6}{0} = 1(06)=1(61)=6\binom{6}{1} = 6(16)=6(62)=6!2!4!=6×52=15\binom{6}{2} = \frac{6!}{2!4!} = \frac{6 \times 5}{2} = 15(26)=2!4!6!=26×5=15(63)=6!3!3!=6×5×43×2×1=20\binom{6}{3} = \frac{6!}{3!3!} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20(36)=3!3!6!=3×2×16×5×4=20(64)=6!4!2!=6×52=15\binom{6}{4} = \frac{6!}{4!2!} = \frac{6 \times 5}{2} = 15(46)=4!2!6!=26×5=15(65)=6!5!1!=6\binom{6}{5} = \frac{6!}{5!1!} = 6(56)=5!1!6!=6(66)=1\binom{6}{6} = 1(66)=1したがって、(x−1)6=1⋅x6⋅1+6⋅x5⋅(−1)+15⋅x4⋅1+20⋅x3⋅(−1)+15⋅x2⋅1+6⋅x⋅(−1)+1⋅1⋅1(x-1)^6 = 1 \cdot x^6 \cdot 1 + 6 \cdot x^5 \cdot (-1) + 15 \cdot x^4 \cdot 1 + 20 \cdot x^3 \cdot (-1) + 15 \cdot x^2 \cdot 1 + 6 \cdot x \cdot (-1) + 1 \cdot 1 \cdot 1(x−1)6=1⋅x6⋅1+6⋅x5⋅(−1)+15⋅x4⋅1+20⋅x3⋅(−1)+15⋅x2⋅1+6⋅x⋅(−1)+1⋅1⋅1(x−1)6=x6−6x5+15x4−20x3+15x2−6x+1(x-1)^6 = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1(x−1)6=x6−6x5+15x4−20x3+15x2−6x+13. 最終的な答えx6−6x5+15x4−20x3+15x2−6x+1x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1x6−6x5+15x4−20x3+15x2−6x+1