次の3つの式を計算する問題です。 (1) $\sqrt{-5} \times \sqrt{-6}$ (2) $(2+\sqrt{-5})^2$ (3) $\frac{\sqrt{12}}{\sqrt{-3}}$代数学複素数平方根計算2025/5/131. 問題の内容次の3つの式を計算する問題です。(1) −5×−6\sqrt{-5} \times \sqrt{-6}−5×−6(2) (2+−5)2(2+\sqrt{-5})^2(2+−5)2(3) 12−3\frac{\sqrt{12}}{\sqrt{-3}}−3122. 解き方の手順(1) −5×−6\sqrt{-5} \times \sqrt{-6}−5×−6−5=5i\sqrt{-5} = \sqrt{5}i−5=5i、−6=6i\sqrt{-6} = \sqrt{6}i−6=6iと表せるので、−5×−6=5i×6i=30i2=−30\sqrt{-5} \times \sqrt{-6} = \sqrt{5}i \times \sqrt{6}i = \sqrt{30}i^2 = -\sqrt{30}−5×−6=5i×6i=30i2=−30(2) (2+−5)2(2+\sqrt{-5})^2(2+−5)2−5=5i\sqrt{-5} = \sqrt{5}i−5=5iと表せるので、(2+−5)2=(2+5i)2=22+2⋅2⋅5i+(5i)2=4+45i+5i2=4+45i−5=−1+45i(2+\sqrt{-5})^2 = (2+\sqrt{5}i)^2 = 2^2 + 2 \cdot 2 \cdot \sqrt{5}i + (\sqrt{5}i)^2 = 4 + 4\sqrt{5}i + 5i^2 = 4 + 4\sqrt{5}i - 5 = -1 + 4\sqrt{5}i(2+−5)2=(2+5i)2=22+2⋅2⋅5i+(5i)2=4+45i+5i2=4+45i−5=−1+45i(3) 12−3\frac{\sqrt{12}}{\sqrt{-3}}−312−3=3i\sqrt{-3} = \sqrt{3}i−3=3iと表せるので、12−3=123i=433i=233i=2i=2i×−i−i=−2i−i2=−2i1=−2i\frac{\sqrt{12}}{\sqrt{-3}} = \frac{\sqrt{12}}{\sqrt{3}i} = \frac{\sqrt{4}\sqrt{3}}{\sqrt{3}i} = \frac{2\sqrt{3}}{\sqrt{3}i} = \frac{2}{i} = \frac{2}{i} \times \frac{-i}{-i} = \frac{-2i}{-i^2} = \frac{-2i}{1} = -2i−312=3i12=3i43=3i23=i2=i2×−i−i=−i2−2i=1−2i=−2i3. 最終的な答え(1) −30-\sqrt{30}−30(2) −1+45i-1+4\sqrt{5}i−1+45i(3) −2i-2i−2i