次の3つの和を求める問題です。 (1) $\sum_{k=1}^{n} (5k+1)$ (2) $\sum_{k=1}^{n} (k+1)(k-2)$ (3) $\sum_{k=1}^{n} (k^3-k)$

代数学数列シグマ和の公式
2025/5/14

1. 問題の内容

次の3つの和を求める問題です。
(1) k=1n(5k+1)\sum_{k=1}^{n} (5k+1)
(2) k=1n(k+1)(k2)\sum_{k=1}^{n} (k+1)(k-2)
(3) k=1n(k3k)\sum_{k=1}^{n} (k^3-k)

2. 解き方の手順

(1)
k=1n(5k+1)=5k=1nk+k=1n1\sum_{k=1}^{n} (5k+1) = 5\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1
k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}
k=1n1=n\sum_{k=1}^{n} 1 = n
よって、
5k=1nk+k=1n1=5n(n+1)2+n=5n2+5n+2n2=5n2+7n25\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 5\frac{n(n+1)}{2} + n = \frac{5n^2+5n+2n}{2} = \frac{5n^2+7n}{2}
(2)
k=1n(k+1)(k2)=k=1n(k2k2)=k=1nk2k=1nkk=1n2\sum_{k=1}^{n} (k+1)(k-2) = \sum_{k=1}^{n} (k^2-k-2) = \sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k - \sum_{k=1}^{n} 2
k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}
k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}
k=1n2=2n\sum_{k=1}^{n} 2 = 2n
よって、
k=1n(k2k2)=n(n+1)(2n+1)6n(n+1)22n=2n3+3n2+n3n23n12n6=2n314n6=n37n3\sum_{k=1}^{n} (k^2-k-2) = \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} - 2n = \frac{2n^3+3n^2+n-3n^2-3n-12n}{6} = \frac{2n^3-14n}{6} = \frac{n^3-7n}{3}
(3)
k=1n(k3k)=k=1nk3k=1nk\sum_{k=1}^{n} (k^3-k) = \sum_{k=1}^{n} k^3 - \sum_{k=1}^{n} k
k=1nk3=(n(n+1)2)2=n2(n+1)24=n4+2n3+n24\sum_{k=1}^{n} k^3 = \left( \frac{n(n+1)}{2} \right)^2 = \frac{n^2(n+1)^2}{4} = \frac{n^4+2n^3+n^2}{4}
k=1nk=n(n+1)2=n2+n2\sum_{k=1}^{n} k = \frac{n(n+1)}{2} = \frac{n^2+n}{2}
よって、
k=1n(k3k)=n4+2n3+n24n2+n2=n4+2n3+n22n22n4=n4+2n3n22n4=n(n1)(n+1)(n+2)4\sum_{k=1}^{n} (k^3-k) = \frac{n^4+2n^3+n^2}{4} - \frac{n^2+n}{2} = \frac{n^4+2n^3+n^2-2n^2-2n}{4} = \frac{n^4+2n^3-n^2-2n}{4} = \frac{n(n-1)(n+1)(n+2)}{4}

3. 最終的な答え

(1) 5n2+7n2\frac{5n^2+7n}{2}
(2) n37n3\frac{n^3-7n}{3}
(3) n4+2n3n22n4\frac{n^4+2n^3-n^2-2n}{4}
または
(3) n(n1)(n+1)(n+2)4\frac{n(n-1)(n+1)(n+2)}{4}