次の3つの和を求める問題です。 (1) $\sum_{k=1}^{n} (5k+1)$ (2) $\sum_{k=1}^{n} (k+1)(k-2)$ (3) $\sum_{k=1}^{n} (k^3-k)$代数学数列シグマ和の公式2025/5/141. 問題の内容次の3つの和を求める問題です。(1) ∑k=1n(5k+1)\sum_{k=1}^{n} (5k+1)∑k=1n(5k+1)(2) ∑k=1n(k+1)(k−2)\sum_{k=1}^{n} (k+1)(k-2)∑k=1n(k+1)(k−2)(3) ∑k=1n(k3−k)\sum_{k=1}^{n} (k^3-k)∑k=1n(k3−k)2. 解き方の手順(1)∑k=1n(5k+1)=5∑k=1nk+∑k=1n1\sum_{k=1}^{n} (5k+1) = 5\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1∑k=1n(5k+1)=5∑k=1nk+∑k=1n1∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nよって、5∑k=1nk+∑k=1n1=5n(n+1)2+n=5n2+5n+2n2=5n2+7n25\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 5\frac{n(n+1)}{2} + n = \frac{5n^2+5n+2n}{2} = \frac{5n^2+7n}{2}5∑k=1nk+∑k=1n1=52n(n+1)+n=25n2+5n+2n=25n2+7n(2)∑k=1n(k+1)(k−2)=∑k=1n(k2−k−2)=∑k=1nk2−∑k=1nk−∑k=1n2\sum_{k=1}^{n} (k+1)(k-2) = \sum_{k=1}^{n} (k^2-k-2) = \sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k - \sum_{k=1}^{n} 2∑k=1n(k+1)(k−2)=∑k=1n(k2−k−2)=∑k=1nk2−∑k=1nk−∑k=1n2∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n2=2n\sum_{k=1}^{n} 2 = 2n∑k=1n2=2nよって、∑k=1n(k2−k−2)=n(n+1)(2n+1)6−n(n+1)2−2n=2n3+3n2+n−3n2−3n−12n6=2n3−14n6=n3−7n3\sum_{k=1}^{n} (k^2-k-2) = \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} - 2n = \frac{2n^3+3n^2+n-3n^2-3n-12n}{6} = \frac{2n^3-14n}{6} = \frac{n^3-7n}{3}∑k=1n(k2−k−2)=6n(n+1)(2n+1)−2n(n+1)−2n=62n3+3n2+n−3n2−3n−12n=62n3−14n=3n3−7n(3)∑k=1n(k3−k)=∑k=1nk3−∑k=1nk\sum_{k=1}^{n} (k^3-k) = \sum_{k=1}^{n} k^3 - \sum_{k=1}^{n} k∑k=1n(k3−k)=∑k=1nk3−∑k=1nk∑k=1nk3=(n(n+1)2)2=n2(n+1)24=n4+2n3+n24\sum_{k=1}^{n} k^3 = \left( \frac{n(n+1)}{2} \right)^2 = \frac{n^2(n+1)^2}{4} = \frac{n^4+2n^3+n^2}{4}∑k=1nk3=(2n(n+1))2=4n2(n+1)2=4n4+2n3+n2∑k=1nk=n(n+1)2=n2+n2\sum_{k=1}^{n} k = \frac{n(n+1)}{2} = \frac{n^2+n}{2}∑k=1nk=2n(n+1)=2n2+nよって、∑k=1n(k3−k)=n4+2n3+n24−n2+n2=n4+2n3+n2−2n2−2n4=n4+2n3−n2−2n4=n(n−1)(n+1)(n+2)4\sum_{k=1}^{n} (k^3-k) = \frac{n^4+2n^3+n^2}{4} - \frac{n^2+n}{2} = \frac{n^4+2n^3+n^2-2n^2-2n}{4} = \frac{n^4+2n^3-n^2-2n}{4} = \frac{n(n-1)(n+1)(n+2)}{4}∑k=1n(k3−k)=4n4+2n3+n2−2n2+n=4n4+2n3+n2−2n2−2n=4n4+2n3−n2−2n=4n(n−1)(n+1)(n+2)3. 最終的な答え(1) 5n2+7n2\frac{5n^2+7n}{2}25n2+7n(2) n3−7n3\frac{n^3-7n}{3}3n3−7n(3) n4+2n3−n2−2n4\frac{n^4+2n^3-n^2-2n}{4}4n4+2n3−n2−2nまたは(3) n(n−1)(n+1)(n+2)4\frac{n(n-1)(n+1)(n+2)}{4}4n(n−1)(n+1)(n+2)