以下の2つの式を因数分解する問題です。 (1) $x^6 - 64$ (2) $x^6 - y^6$代数学因数分解多項式式の展開2025/5/141. 問題の内容以下の2つの式を因数分解する問題です。(1) x6−64x^6 - 64x6−64(2) x6−y6x^6 - y^6x6−y62. 解き方の手順(1) x6−64x^6 - 64x6−64x6x^6x6 を (x3)2(x^3)^2(x3)2、64 を 828^282 と考えると、これは二乗の差の形なので、a2−b2=(a+b)(a−b)a^2 - b^2 = (a+b)(a-b)a2−b2=(a+b)(a−b) を利用します。よって、x6−64=(x3)2−82=(x3+8)(x3−8)x^6 - 64 = (x^3)^2 - 8^2 = (x^3 + 8)(x^3 - 8)x6−64=(x3)2−82=(x3+8)(x3−8)さらに、x3+8=x3+23x^3 + 8 = x^3 + 2^3x3+8=x3+23 と x3−8=x3−23x^3 - 8 = x^3 - 2^3x3−8=x3−23 はそれぞれ和と差の立方なので、a3+b3=(a+b)(a2−ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2)a3+b3=(a+b)(a2−ab+b2) と a3−b3=(a−b)(a2+ab+b2)a^3 - b^3 = (a-b)(a^2 + ab + b^2)a3−b3=(a−b)(a2+ab+b2) を利用します。x3+8=(x+2)(x2−2x+4)x^3 + 8 = (x + 2)(x^2 - 2x + 4)x3+8=(x+2)(x2−2x+4)x3−8=(x−2)(x2+2x+4)x^3 - 8 = (x - 2)(x^2 + 2x + 4)x3−8=(x−2)(x2+2x+4)したがって、x6−64=(x+2)(x2−2x+4)(x−2)(x2+2x+4)x^6 - 64 = (x + 2)(x^2 - 2x + 4)(x - 2)(x^2 + 2x + 4)x6−64=(x+2)(x2−2x+4)(x−2)(x2+2x+4)x6−64=(x−2)(x+2)(x2−2x+4)(x2+2x+4)x^6 - 64 = (x - 2)(x + 2)(x^2 - 2x + 4)(x^2 + 2x + 4)x6−64=(x−2)(x+2)(x2−2x+4)(x2+2x+4)(2) x6−y6x^6 - y^6x6−y6x6x^6x6 を (x3)2(x^3)^2(x3)2、y6y^6y6 を (y3)2(y^3)^2(y3)2 と考えると、これは二乗の差の形なので、a2−b2=(a+b)(a−b)a^2 - b^2 = (a+b)(a-b)a2−b2=(a+b)(a−b) を利用します。よって、x6−y6=(x3)2−(y3)2=(x3+y3)(x3−y3)x^6 - y^6 = (x^3)^2 - (y^3)^2 = (x^3 + y^3)(x^3 - y^3)x6−y6=(x3)2−(y3)2=(x3+y3)(x3−y3)さらに、x3+y3x^3 + y^3x3+y3 と x3−y3x^3 - y^3x3−y3 はそれぞれ和と差の立方なので、a3+b3=(a+b)(a2−ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2)a3+b3=(a+b)(a2−ab+b2) と a3−b3=(a−b)(a2+ab+b2)a^3 - b^3 = (a-b)(a^2 + ab + b^2)a3−b3=(a−b)(a2+ab+b2) を利用します。x3+y3=(x+y)(x2−xy+y2)x^3 + y^3 = (x + y)(x^2 - xy + y^2)x3+y3=(x+y)(x2−xy+y2)x3−y3=(x−y)(x2+xy+y2)x^3 - y^3 = (x - y)(x^2 + xy + y^2)x3−y3=(x−y)(x2+xy+y2)したがって、x6−y6=(x+y)(x2−xy+y2)(x−y)(x2+xy+y2)x^6 - y^6 = (x + y)(x^2 - xy + y^2)(x - y)(x^2 + xy + y^2)x6−y6=(x+y)(x2−xy+y2)(x−y)(x2+xy+y2)x6−y6=(x−y)(x+y)(x2−xy+y2)(x2+xy+y2)x^6 - y^6 = (x - y)(x + y)(x^2 - xy + y^2)(x^2 + xy + y^2)x6−y6=(x−y)(x+y)(x2−xy+y2)(x2+xy+y2)3. 最終的な答え(1) (x−2)(x+2)(x2−2x+4)(x2+2x+4)(x - 2)(x + 2)(x^2 - 2x + 4)(x^2 + 2x + 4)(x−2)(x+2)(x2−2x+4)(x2+2x+4)(2) (x−y)(x+y)(x2−xy+y2)(x2+xy+y2)(x - y)(x + y)(x^2 - xy + y^2)(x^2 + xy + y^2)(x−y)(x+y)(x2−xy+y2)(x2+xy+y2)